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Abstract: Solar Tower power plants face significant challenges to ensure their
worldwide deployment, including heliostat soiling leading to optical efficiency
degradation and increased operation and maintenance costs due to cleaning opera-
tions. Additionally, optimizing the thermal power output of the receiver is crucial
and depends on the selected aiming strategy, directly affecting receiver thermal
efficiency and operational lifetime.
To tackle these issues, this research proposes a methodology for the preliminary
design of Solar Tower power plants’ solar fields. This methodology integrates a
physical model to simulate soiling losses and optimizes cleaning schedules using a
fixed-frequency time-based heuristic method. After selecting the desired aiming
strategy, SolarPILOT is utilized alongside a heuristic defocusing and re-focusing
strategy to simulate plant performance. Moreover, drivers failure analysis is con-
sidered for improved accuracy.
Applied to Solar Tower facilities in Mount Isa, Queensland, Australia, the method-
ology analyzes various solar field sizes to identify the configuration with the lowest
Levelized Cost of Electricity. Results show that oversizing the solar field by five
times and coupling it with a 6.5-hours Thermal Energy Storage system is optimal
for turbine full-load operation, while oversizing by four times and coupling with
an 11.5-hours storage system is optimal for load-based operation. A sensitivity
analysis on heliostat pricing reveals a drop in field oversizing by one size when the
price doubles, regardless of dispatching strategies and field cleaning conditions.
In conclusion, this research contributes to the development of a comprehensive
sizing methodology for Solar Tower power plants, integrating soiling and aiming
strategies and highlighting the impact of heliostat pricing and dispatching strate-
gies on plant performance and economics.
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1. Introduction

The energy transition requires a rapid expansion of electricity generation from renewable sources. According to
the International Energy Agency (IEA) 1.5° Scenario, the global share of renewables in the power generation mix
is expected to grow from 28% to 91%, between 2020 and 2050 [1]. In such context, Concentrated Solar Power
(CSP) plants emerge as a promising technology, whose Levelized Cost of Electricity (LCOE) has experienced a
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significant 69% drop, from 0.380USD/kWh in 2010 to 0.118USD/kWh in 2022 [2].
While CSP plants equipped with Thermal Energy Storage (TES) enhance power system flexibility and stability,
their widespread adoption remains limited, with the cumulative global capacity reaching only 6.5 GW by the
end of 2022 [2]. To foster the adoption of CSP plants, reduction in installation costs, technology improvements,
competitive supply chains and reduced O&M costs are needed.
Solar Towers (STs) are advantageous for their ability to achieve high solar concentration factors, operate at
elevated temperatures, and exhibit increased power block efficiencies and thermal storage densities. Conse-
quently, ST plants are expected to increase their share in the energy mix in the coming years [2]. However, they
face many challenges that can hinder their worldwide deployment, one of them being heliostats soiling, which
reduces the solar field optical efficiency and the power collected on the receiver, with impacts on Operation
and Maintenance (O&M) costs related to heliostats cleaning [3]. In addition, the plant can be successfully
operated only if the receiver damage is avoided, preserving its lifetime. A proper aiming strategy can prevent
permanent receiver damage and thermal efficiency degradation, while seeking the maximization of the thermal
power output [4]. Addressing these issues is therefore fundamental to ensure the competitiveness of Solar Tower
plants in the renewable energy sector.

1.1. State Of The Art

A fundamental step of the design of a Solar Tower plant deals with the identification of the optimal size of
the heliostat field, which represents approximately 50% of the total investment cost [5]. The solar field design
is a trade-off between plant performance, power dissipation, thermal efficiency and optical efficiency, including
eventual defocusing [6]. The design of efficient and cost-effective solar fields has been widely studied. The work
by Rizvi et al. (2021) [7] provides a overview of the optimization methodologies employed over the past decades.
Table 1 summarizes the most relevant studies and the latest available options. They represent only a fraction
of the extensive efforts dedicated to this topic.

Table 1: Summary of heliostats field optimization techniques

Reference Obj function and variables Algorithm Solar field type

Collado et al. (2019)
[8]

• Annual Weighted Efficiency
• Levelized Cost of Electricity
• Field layout and boundary, tower

height and receiver size

Smart search broken into
two consecutive stages

Surrounding Radial
Staggered

Li et al. (2018) [9] • Annual Averaged Efficiency
• Annual Energy Collected per Unit

Cost
• Daily averaged efficiency
• Daily energy collection

Hybrid Particle Swarm Op-
timization - Genetic Algo-
rithm

Radial Staggered
with Zones

Wang et al. (2019)
[10]

• Row spacing
• Pedestal height
• Instantaneous optical efficiency

High Dimensional Genetic
Algorithm

Surrounding Radial
Staggered

Cruz et al. (2019)
[11]

• Power concentrated by field HECTOR, meta-heuristic
algorithm

Pattern Free Layout

Deng et al. (2020)
[12]

• 43 radial spacing between rows are
optimized

Dynamic Specification
based Differential Evolution

Rose Pattern based
on Radial Staggered
Pattern

Saghafifar et al.
(2019) [13]

• Annual weighted efficiency
• Levelized Cost of Energy

Genetic Algorithm Radial Staggered

Schöttl et al. (2019)
[14]

• Ratio of optical efficiency and
ground usage

Evolutionary Algorithm Radial Staggered
bounded by a poly-
gon

Yang et al. (2020)
[15]

• Insolation weighted optical efficiency
• Levelized Cost of Electricity

Alternating direction opti-
mization method

Radial Staggered

Ghirardi et al.
(2021) [16]

• Overall annual efficiency
• Levelized Cost of Electricity
• Tower height

Heuristic two-step optimiza-
tion

Radial Staggered
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1.1.1. Aiming Strategies

The solar field design is strictly related to the receiver, particularly to the thermal flux collected on its surface,
which in turn depends on heliostat tracking. In addition, one of the main challenges faced by Solar Tower plants
is enhancing the thermal efficiency while addressing durability issues. The efficiency can be compromised by
high temperature gradients and hot-spots on the receiver surface. Effective management of heliostats tracking
is essential for achieving a smooth thermal flux and generating the maximum power within temperature and
flux limitations. In this overview, various aiming strategies developed over the years are discussed.

Vant-Hull et al. (2002) [17] introduced the concept of Allowable Flux Density (AFD), representing the maximum
flux density absorbed by the receiver without causing damage. The study underscored the significance of the
aiming strategy in maintaining peak flux density below the AFD. An aimpoint management system for a plant
with a cylindrical receiver, incorporating a Static Aimpoint Processing System (SAPS) and a Dynamic Aimpoint
Processing System (DASP), is presented. Operational adjustments involve spreading heliostats’ aimpoints
vertically to reduce the peak flux and removing high-flux heliostats from tracking, ensuring safe plant operation
but not optimizing the power delivery to the receiver.
Building on this work, Sánchez et al. (2017, 2018) [18, 19] extended the aiming strategy for a cylindrical receiver
with the goal of maximizing the thermal power output. This approach includes a Search Algorithm to determine
the maximum aiming factor for each solar field sector and a Fit Algorithm to match the symmetric flux density
profile with the decreasing AFD profile along the Heat Transfer Fluid (HTF) path.
García et al. (2017) [20] integrated the AFD-based model proposed by Sánchez et al. (2017) [18] into a closed-
loop control strategy. The study aimed to minimize the difference between the maximum flux and the AFD at
that point. Proportional Integral Derivative (PID) controllers were implemented for each group in the heliostat
field, facilitating effective distribution of flux density on the receiver while adhering to AFD limits.

Many meta-heuristic optimization techniques for heliostat tracking have been explored over the years. Cruz
et al. (2016) [21] formulated a two-layered optimization problem. A meta-heuristic algorithm selected the
subset of heliostats to be activated and a local gradient-based optimizer identified optimal pairings of heliostats
and aiming points. The objective function aimed to minimize the discrepancy between the desired flux on the
receiver and the flux generated by the chosen configuration.
Salomé et al. (2013) [22] proposed an open-loop strategy coupled with a TABU meta-heuristic optimizer for
a cavity receiver solar tower. The objective was to flatten the distribution of thermal flux on the receiver,
minimizing spillage losses. The study highlighted that the quantity of aiming points had no significant impact
on the results, with heliostat tracking errors and aperture size identified as primary limiting factors.
Baserati et al. (2014) [23] employed a genetic algorithm to optimize the aiming strategy, aiming to minimize
the standard deviation of flux density on the receiver surface. An important insight was the recognition that
the size of the absorber surface must be chosen considering the material properties, as a smaller aiming surface
resulted in increased interception efficiency but also higher maximum flux density.
Belhomme et al. (2014) [24] presented a meta-heuristic approach for optimizing the aiming strategy of a
concentrated photovoltaic (CPV) receiver, using the Ant Colony Optimization (ACO) meta-heuristic. The
same approach was then extended to a flat plate receiver Solar Tower. Recognizing the lengthy optimization
time associated with ACO, Oberkirsch et al. (2023) [25] introduced improvements by pre-computing flux maps,
grouping heliostats, and providing an initial solution to ACO, significantly reducing computational time.

In contrast to meta-heuristic methods, Astolfi et al. (2017) [26] introduced a deterministic optimization approach
focused on reducing the peak flux on the receiver. The solar field and receiver were divided into sectors, with
heliostats in the same sector aiming at the same coordinate on the vertical line facing them. The objective
function aimed to minimize the differences between the maximum flux on the receiver vertical line and the ideal
uniformly spread flux. Four approaches were proposed, the most efficient ones considering overlapping between
sectors, effectively flattening the flux distribution and reducing peak flux.
Ashley et al. (2017) [27] also applied a deterministic approach to optimize a flat plate receiver using Binary
Integer Linear Programming (BILP). A grid of aimpoints on the receiver surface was considered, with the
objective of maximizing the total incident energy, incorporating constraints to limit minimum and maximum
energy deliveries, as well as the energy difference between adjacent aimpoints. The study revealed that heliostats
aiming at the center of the receiver exhibit lower efficiencies, while those at the edges have higher efficiencies.

1.1.2. Soiling Losses and Cleaning Strategies

The solar field can contribute up to 40% of solar energy losses [5], which are enhanced by heliostat soiling.
The decrease in mirror cleanliness leads to a loss in reflectance, consequently degrading performance because
the incoming Direct Normal Irradiance (DNI) can not be effectively reflected towards the receiver. Soiling also
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weights on O&M costs, due to the expensive cleaning procedure. Typical O&M costs for CSP plants range
between 0.02USD/kWh and 0.04USD/kWh, representing about 18% to 20% of the LCOE [2], and mirrors
cleaning is often the predominant component [28]. In this overview, the soiling phenomenon is firstly described
and assessed, then several cleaning policies are summarized.

The majority of the studies dealing with soiling characterization in CSP plants are related to experimental and
statistical analysis. A summary is presented in Table 2.

Table 2: Summary of soiling experimental studies

Reference Content

Griffith et al. (2014) [29] • Periodic reflectivity measurements on samples with various exposures and tilts.
• Reflectivity loss calculation as the ratio between the average pixel value in the

contaminated image and the average pixel value in the clean reference.

Merrouni et al. (2015) [30] • Periodic reflectivity measurements on glass mirrors and aluminium samples, with
various exposures and tilt angles.

• Cleanliness is the ratio between the mirror reflectivity in dirty and in clean state.

Merrouni et al. (2020) [31] • Periodic reflectivity measurements on mirror samples.
• Average soiling rate calculation based on the sampling period data.

Bouaddi et al. (2015) [32] • Periodic reflectivity measurements on mirror glass and aluminium samples.
• Linear Gaussian state space method describes and forecasts cleanliness.

Bouaddi et al. (2017) [33] • Periodic reflectivity measurements on mirror glass and aluminium samples.
• Cleanliness factor is the ratio between the reflectivity in dirty and in clean state.
• Dynamic Factor Analysis (DFA) modeling changes in cumulative soiling.

Conceição et al. (2018) [34] • Periodic reflectivity measurements on flat mirror and soiling rate calculation.
• Multiple linear regression model and artificial neural networks for particle deposi-

tion impact, based on environmental variables.

Bonanos et al. (2020) [35] • Periodic reflectivity measurements.
• Multiple linear regression model and artificial neural networks to link soiling and

environmental variables.

For the first time, in the work by Picotti et al. (2018) [36] a physical model predicting soiling on solar collectors
and the consequent performance loss was described. The soiling process unfolded in a four-step sequence,
referred to as the "dust life cycle" [37]. A summary is shown in Table 3.

Table 3: Dust life cycle summary

Generation Deposition Adhesion Removal

Phenomena leading to
dust production and load-
ing into the atmosphere,
involving particles lifting,
global and local trans-
port, plus other sources
or sinks.

Impact of particles on
collectors surfaces, in-
fluenced by gravity, at-
mospheric turbulence,
and boundary layer ef-
fects.

Phenomena based on the in-
teraction between surface and
dust at the nano and mi-
cro scales: Van der Waals
forces, capillarity forces, elec-
trostatic forces, and cementa-
tion effect are involved.

Phenomena depending
on wind, gravity, and
rain, counterbalancing
the adhesion effect.

Considering the balance between airborne particles flow onto the surface and their removal, the soiling rate is
determined. The flux of dust particles Fd is defined by Equation 1, where Cd represents the airborne dust
concentration, vd the deposition velocity and αt the mirror tilt angle.

Fd = Cd · vd · cos(αt) (1)

Once the quantity and size distribution of dust particles on the mirror surface are established, the reflectance
ρ can be expressed as per Equation 2. Here, ρ0 represents the mirror reflectance in clean conditions, Amir the
mirror area, and Anr the non-reflecting area, accounting for portions shaded by dust particles and areas where
the reflected beam is blocked. Both Amir and Anr depend on the incidence angle θ, with higher incidents angles
resulting in more shading and blocking.

ρ = ρ0 ·
(
1− Anr(θ)

Amir

)
(2)
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In a subsequent study, Picotti et al. (2019) [38] applied the physical soiling model to all heliostats in a solar
field, determining the corresponding soiling efficiency as defined in Equation 3. Ahel represents the heliostat
area, and Asoil is the sum of shading and blocking areas. The optical efficiency ηopt is then computed as per
Equation 4, where ηopt,cl is the clean optical efficiency.

ηsoil = 1− Asoil

Ahel

ηopt = ηopt,cl · ηsoil

(3)

(4)

The study assessed various cleaning strategies in terms of optical efficiency recovery. The results indicated
diminishing marginal returns on the beneficial impact of additional cleaning. The optimal cleaning frequency
was determined by balancing the extra revenues from cleaned heliostats against the cleaning costs.

The trade-off between optical efficiency recovery through cleaning activities and associated O&M costs under-
scores the importance of determining an optimal heliostat cleaning schedule. One of the first cleaning policies
was presented by Bergeron et al. (1891) [39], describing the optimal cleaning frequency identification as an
economic decision, aiming to strike a balance between increased energy production and cleaning costs. This
approach had two main limitations. Firstly, it assumed a constant soiling rate, overlooking potential errors
resulting from the temporal variation of soiling. Secondly, the cleaning schedules were based on fixed-time
intervals, neglecting the influence of stochastic time-varying factors.
In a study by Wolfertstetter et al. (2018) [40], a time-dependent approach was introduced to address the
limitations of constant soiling rate assumptions. Collector cleanliness was measured, and the soiling rate was
determined at a daily resolution, revealing significant variations throughout the year. The study defined two
types of cleaning schedules: threshold-based and constant. Results highlighted the increase in accuracy for
time-resolved simulations. However, some limitations persisted, including the application of a uniform soiling
rate to the entire solar field and the constant cleaning order of solar field loops.

The literature reviewed so far primarily addresses solar collectors. Focusing on heliostats cleaning schedules,
Truong Ba et al. (2017) [41] introduced the concept of Condition-Based Maintenance. Cleaning decisions
were made by comparing reflectivity with a time-varying threshold, influenced by stochastic factors like soiling
rate, weather, and electricity prices. The study formulated an optimization problem as a finite-horizon Markov
Decision Process, aiming to minimize the expected total maintenance cost. When compared with the time-
based policy by Bergeron et al. [39], the condition-based cleaning policy by Truong Ba et al. [41] led to cost
savings and reduced cleaning frequencies. However, the description of soiling as a stochastic process based on
experimental data lacked a physical background.
The study by Ashley et al. (2019) [42] focused on optimizing cleaning schedules for CSP plants with the goal of
maximizing energy generation. The approach involved addressing both an allocation problem, where heliostats
are assigned to specific cleaning periods, and a routing problem for each time period. The heliostat field was
divided into homogeneous groups, and each cluster was assigned to a cleaning period. A linear degradation
function was assumed to represent mirror reflectivity loss over time, the adoption of constant soiling rates in
both space and time being a strong limitation. In addition, there was an exclusive focus on energy maximization
without considering the balance between costs and revenues.

Finally, the work by Picotti et al. (2020) [43] addressed some limitations of the previously described method-
ologies, introducing physical model-based soiling predictions [36] and an economic analysis of cleaning activities
under resource constraints. The solar field was segmented into sectors, and the cleaning strategy involved de-
termining the number of sectors to be cleaned daily, thus the deployment of trucks and crews, and the cleaning
order. The objective was to minimize the Total Cleaning Cost (TCC), which comprised operating cleaning costs
and degradation costs, accounting for electricity generation losses due to soiling. Two optimization strategies
were examined: a simplified heuristic and Mixed-Integer Linear Programming (MILP). The latter improved the
TCC by allocating resources more efficiently, concentrating the cleaning schedule where it was needed the most.
An extension of this work was done in the research by Anderson et al. (2023) [44], where cleaning resources
were optimized considering stochastic soiling trajectories in the initial stages of site selection and plant design,
addressing implications related to operational choices.

1.1.3. Drivers Failure

When considering O&M costs, potential driver failures represent a significant component. These failures can
arise from various electronic components, such as heliostat controllers and gearboxes, elevation and azimuth
motors, elevation and azimuth encoders, mirror assemblies, and elevation and azimuth limit switches [45].
Accounting for heliostat reliability is crucial for a robust techno-economic assessment, yet few studies address
it in the literature. For instance, Benammar et al. (2020) [46] conducted a detailed analysis of heliostat
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failure probabilities, drawing on mechanics, material studies, and aerodynamics, and compared four methods
for reliability analysis.

1.2. Research Objectives

Overall, aiming strategies and soiling have been thoroughly examined in the operation of solar tower plants, but
their integration into the design phase is not widely explored. In this context, the proposed research establishes
a methodology for preliminarily sizing the solar field, with the aim of maximizing electricity production and
minimizing the Levelized Cost of Electricity, acting both on the initial investment cost and ongoing O&M
costs. The focus is determining the number of heliostats to be added to the solar field, assuming fixed receiver,
tower, heliostat geometries, and row spacings. The limitation of such approach is the simplification of the
layout optimization to the identification of the optimal number of heliostats. However, it integrates various
factors that have not been collectively considered in previous studies, including selection of aiming strategies and
consideration of soiling losses. Furthermore, this research emphasizes the integration of O&M cost considerations
into the design phase by optimizing heliostat cleaning procedures and accounting for associated cleaning costs.
Additionally, a driver failure analysis is integrated for a more comprehensive techno-economic assessment. To
the authors’ knowledge, this is the first study to simultaneously account for heliostat cleaning and failure, and
related O&M costs, during the design phase. The aim is to develop a robust methodology that enhances the
efficacy of solar field size selection.

2. Methods

The flowchart of the methodology developed in this project to optimize the solar field design is illustrated in
Figure 1. It delineates the steps described in the following sections.

Figure 1: Methodology flowchart
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The optimization of aiming strategy and characterization of receiver thermal flux are performed using So-
larPILOT (Solar Power Tower Integrated Layout and Optimization Tool) coupled with a heuristic defocusing
strategy. This approach is elaborated upon in Section 2.2 and is chosen as the reference method for this
research, after dismissing HALOS (Heliostat Aimpoint and Layout Optimization Software). HALOS displays
inconsistencies in generating flux maps, making it unsuitable for adoption. Further details are discussed in
Section 2.1. Furthermore, soiling model and cleaning strategy optimization methodology with HelioSoil are
described (Section 2.3), as well as drivers reliability analysis (Section 2.4). Two options for the dispatch-
ing strategy are presented (Section 2.5): power block full-load operation and load curve-based operation.
Finally, indicators characterizing the CSP plant, especially the Levelized Cost of Electricity, are introduced
(Section 2.6). When not specified, the methodology considers a single solar field array and can be applied to
any of the layout configurations detailed in Section 3.1.

2.1. HALOS

Heliostat Aimpoint and Layout Optimization Software (HALOS) is an open-source decision tool developed by
the National Renewable Energy Laboratory (NREL) and implemented Python [47]. It employs mixed-integer
programming models to determine the optimal aimpoint strategy for the solar field in CSP central receiver
plants. HALOS considers various input parameters such as weather conditions, location details, heliostat
specifications, solar field layout, and receiver characteristics, and generates an aiming strategy that maximizes
thermal power delivery to the receiver while adhering to constraints on the thermal flux profile. Additionally,
HALOS includes a module that interfaces directly with SolarPILOT, an NREL-developed tool for characterizing
solar field performance and generating layouts and flux maps that serve as input to the models [48].

2.1.1. Model Formulation and Description

To reduce the computational effort of flux maps generations, two approximations are introduced:
1. Receiver surface discretization. The receiver surface is discretized into two grids. The first grid consists

of measurement points, aiding in estimating thermal power delivery and ensuring adherence to flux
constraints. The second grid comprises aimpoints, which heliostats may target.

2. Flux maps translation without recalculation. A flux map is initially calculated when a central aimpoint
is selected, considering a specific heliostat and sun location. For each other aimpoint, the central flux
map is shifted by the distance between the aimpoint itself and the central one, eliminating the need for
recalculation.

In Table 4 the notation used in the optimization model formulation is reported.

Table 4: HALOS Notation

Stets and Indices

h ∈ H: heliostats

m ∈ M: receiver measurement points

m ∈ M̂m: measurement points that neighbor measurement point m

a ∈ A: receiver aimpoints

Parameters Units

Chma: thermal flux incident to measurement point m when heliostat h aims at point a on
the receiver

[W/m2]

Sm: surface area allocated to measurement point m [m2]

Bm: upper limit on thermal flux incident to measurement point m [W/m2]

Dmm′ : upper limit on difference in flux incident to measurement points m and m’ [W/m2]

Decision Variables Units

yha: 1 if heliostat h focuses on aimpoint a, and 0 otherwise [−]

xm: thermal flux delivered to measurement point m [W/m2]

In a general form, the optimization model can be formulated as follows.
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z∗ = max

( ∑
m∈M

Sm · xm

)
xm =

∑
h∈H

∑
a∈A

Chma · yha ∀m ∈ M

xm ≤ Bm ∀m ∈ M
xm − xm′ ≤ Dmm′ ∀(m,m′) ∈ M×M
xm ≥ 0 ∀m ∈ M
yha ∈ {0, 1} ∀h ∈ H, a ∈ A

(5)

(6)

(7)
(8)
(9)

(10)

Equation 5 defines the objective function, which aims to determine the coupling of heliostats and aimpoints
to maximize power collection on the receiver surface. The collected power is calculated as the sum of the
thermal flux delivered to each measurement point multiplied by the allocated area. Constraint 6 restricts
the computation of thermal flux to only the selected aimpoints. Constraint 7 and Constraint 8 limit the
incident flux on measurement points and the thermal gradient between two adjacent points, respectively. Lastly,
Constraint 9 and Constraint 10 ensure that variables maintain realistic values.

To enhance computational efficiency, the optimization problem undergoes the following strategies:
1. Spatial Decomposition. The solar field is partitioned into sections for which the aimpoints are optimized

in parallel, by introducing constraints on allowable flux limits for each section. Subsection solutions are
then aggregated and adjusted to derive the overall strategy.

2. Heuristic Grouping Method. The solar field is divided into heliostats groups, whose size is pre-specified.
Each group of heliostats is directed towards the same aimpoints on the receiver. This approach reduces
the model size by a factor corresponding to the group size.

2.1.2. HALOS Functioning and Problems

The schematic shown in Figure 2 briefly summarizes how HALOS works. For the purpose of this research, the
solar field layout is predetermined and central flux maps are generated using SolarPILOT.

INPUTS

Solar field layout

Receiver characteristics

Heliostats characteristics

Weather data

Simulation settings:

• Solar field layout generation settings

• Number and type of field

subsections

• Heliostat group size to focus on

the same aimpoint

• Flux maps generation settings

• Number of aimpoints, that may be

targeted by heliostats

• Number of measurement points,

to estimate the thermal power

delivery to the receiver and check

flux limits

• Flux gradient limits generation settings

• Upper and lower thermal flux

bounds

Is the 

solar field 

provided?

No

Yes
Input solar field file

SolarPILOT

Are flux 

maps 

provided?

Central flux maps

No

Yes
Input flux maps

SolarPILOT

Are flux 

gradient 

limits 

provided?

Flux gradient 

limits

No

Yes

HALOS Gaussian 

images

Input flux limits

AIMPOINT 

OPTIMIZATION MODEL

Objective function: 

Maximize the power delivered to the receiver

Constraints:

• Only the selected aimpoints contribute to the

total flux incident to the measurement points

• The flux incident to each measurement point

is limited to pre-specified bounds

• The flux gradient on the receiver must

respect pre specified limits

Solution method:

• Central flux maps translation without

recalculation: given heliostat and sun

locations, the flux map is computed for a

central aimpoint. For every other aimpoint,

the central flux map is translated

• Spatial decomposition: the field is divided

into smaller sections, that are optimized in

parallel

• Heuristic grouping method: each field

section is divided into groups of heliostat

that must be directed to the same aimpoint

Output:

Aiming strategy, coupling between each 

heliostat and the corresponding aimpoint on 

the receiver (if defocusing does not occur)

Figure 2: HALOS flowchart

HALOS generates thermal flux maps on the receiver surface based on the given heliostats and sun positions,
combining the input central flux maps and considering the optimal heliostat-aimpoint associations. HALOS
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also provides aimpoints coordinates, heliostat-aimpoint associations, and identifies defocused heliostats within
the solar field. It is feasible to set HALOS aimpoints coordinates into SolarPILOT and assess the extent to
which the resulting flux maps align with those generated by HALOS. The first challenge encountered involves
aligning the two reference systems.

On a cylindrical receiver, HALOS utilizes vertically-shifted aimpoints with respect to the receiver equatorial
line. Each heliostat aims at the origin of the reference system and can choose from a set of aimpoints along
the vertical direction. Visualizing the solar field from above, is it possible to envision a ray connecting the
heliostat center to the receiver center. The intersection with the receiver surface pinpoints the position of the
aimpoints column (refer to Figure 3(a)). For each heliostat, HALOS provides the vertical displacement of the
corresponding aimpoint with respect to the receiver equatorial line, ZH. The associated SolarPILOT coordinates
require the computation of angle α, where XHe and YHe represent the heliostat position coordinates in the field.

α = arctan

(
XHe

YHe

)
(11)

SolarPILOT x- and y-coordinates are represented by the components of a rotating vector originating from the
centre of the reference system and directed towards the receiver surface. They are computed, together with
the z-coordinate, as shown in Equations 12, where rrec is the receiver radius and htower is the receiver tower
optical height. 

XSP = rrec · sinα
YSP = rrec · cosα
ZSP = ZH + htower

(12)

On a flat plate receiver, HALOS utilizes a two-dimensional grid of aimpoints. In its reference system, each
aimpoint is characterized by three coordinates (refer to Figure 3(b)). XH is the horizontal displacement of the
aimpoint with respect to the centre of the flat plate. YH is the angle between the aimpoint position on the flat
plate and the vertical direction. ZH is the optical height of the aimpoint. The conversion of these coordinates
into SolarPILOT reference system is shown in Equations 13.

XSP = −XH

YSP = YH

ZSP = ZH

(13)

A.P.

ZSPZH

YSP

XSP

He

XHe

YHe

A.P.

((a)) Cylindrical receiver

A.P.

XH = -XSP

ZH = ZSP 
A.P. A.P. YH = YSP

((b)) Flat plate receiver

Figure 3: HALOS and SolarPILOT reference systems

While the conversion between the two reference systems appears to be effective for the case studies analyzed by
the developers, inconsistencies arise when applied to larger solar fields. As an example, HALOS is executed for
the base case study detailed in Section 3, and the resulting aimpoints are used as input to SolarPILOT. The
respective flux maps are illustrated in Figure 4(a) and Figure 4(b), for midday on the 8th of January. The flux
distributions exhibit different shapes, and SolarPILOT’s flux map exceeds the peak flux limit of 1000 kW/m2.
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((a)) HALOS flux map ((b)) SolarPILOT flux map

Figure 4: Flux maps comparison

Numerous attempts have been made to rectify the mismatch between the tools, but a consistent resolution has
not been achieved yet. Consequently, HALOS is deemed unsuitable for the purposes of this research and is
abandoned. The NREL is actively addressing these issues with the potential for future software use.

2.2. SolarPILOT and Heuristic Defocusing

Solar Power Tower Integrated Layout and Optimization Tool (SolarPILOT) is a tool developed by the NREL
for designing, characterizing, and optimizing CSP tower plants [48]. It uses an analytical simulation engine
based on a modified Gaussian series expansion to characterize the image generated by each heliostat. Unlike
ray-tracing-based tools, that construct the model using numerous rays and probabilistic modeling to achieve a
Gaussian-form image, SolarPILOT incorporates error distributions directly into its analytical formulation. This
explicit modeling approach enables faster solving.

SolarPILOT facilitates optical and thermal performance simulations based on the specifications of the receiver
and heliostats, solar field characteristics, and weather data. The flux analytical Hermite polynomial simulation
model is employed in this application. The simulation produces flux maps, and the choice of the aiming strategy
influences the results. Among the available built-in options, Image Size Priority aiming method is relevant to
the objectives of this research, as it allows for the dispersion of the thermal flux across the receiver surface rather
than concentrating it in a narrow region. This method determines heliostats aimpoints positions by sequentially
placing them on the receiver at locations with the lowest flux. The order of placement is influenced by the size
of the image on the receiver, prioritizing images with notable distortion or those situated at a greater distance.
Following each heliostat placement, SolarPILOT identifies a local minimum in flux intensity and adjusts the
position of the next heliostat accordingly.

Image Size Priority aiming method offers the advantage of distributing thermal flux across the receiver surface,
thereby minimizing the flux gradient. However, the design constraints impose limits on the maximum power that
can be collected on the receiver. SolarPILOT lacks an engine capable of detecting over-fluxes and subsequently
defocusing heliostats, making necessary the development of a custom Heuristic defocusing strategy, which is
depicted in the flowchart presented in Figure 5.

The algorithm is implemented in Python, accessing the functionalities of SolarPILOT via the Co-Pylot API
(Application Programming Interface) [47]. This allows for the simulation of solar field performance on an hourly
basis. The inputs are those required by SolarPILOT, plus the cleanliness time series, that will be discussed in
Section 2.3. The solar field is operated when the sun elevation angle is higher than the stow angle. When
this condition is met, Image Size Priority aiming strategy is run, given the cleanliness loss at the current time
step and the defocusing strategy at the previous time step. The resulting total power incident on the receiver
may exceed the design value, Qthreshold. To address this issue, heuristic defocusing and re-focusing strategies
are formulated. The following variables are defined:

• Qin is the total power incident on the receiver, as provided by SolarPILOT, applying the defocusing
strategy of the previous time step. It does not necessarily respect the threshold.
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• Qfin is the total power incident on the receiver, after defocusing or re-focusing. It always complies with
the threshold.

When Qin exceeds the threshold, defocusing takes place. The solar field is divided into eight radial sectors: to
evenly distribute the defocused heliostats, eight heliostats are defocused simultaneously, one for each sector.
The defocusing process starts from the heliostats closer to the receiver, the most efficient ones, to speed up the
computation. Defocusing ceases when the power incident on the receiver, Qfin, falls below the threshold.
On the other hand, when Qin is smaller than Qthreshold, there is potential for refocusing. Firstly, an attempt
is made to refocus all the defocused heliostats. If the resulting Qfin complies with the threshold, refocusing is
promptly executed. Otherwise, heliostats are refocused in groups of four, following the defocusing order, until
the threshold is met. In general, Qfin is close but never equal to Qthreshold, due to the problem discretization.

Start

INPUTS

• Solar field layout

• Receiver settings

• Heliostats settings

• Weather data

• Cleanliness loss timeseries

• SolarPILOT aiming strategy

t = 0

Elevation angle 

(t) > stow angle

• Cleanliness loss (t)

• Defocused

heliostats (t – 1)

SolarPILOT performance simulation

• Power collected on

the receiver Qin (t)

Qin (t) > Qthreshold

Are heliostats all

focused?

Refocusing

Defocusing

Yes

Yes No

No

Yes

• Power collected on the

receiver Qfin (t)

• Defocused heliostats (t)

t = t + 1

t > 8760
No

Yes

End

No

• Null power collected on

the receiver Qfin (t)

• All heliostats defocused

Figure 5: Heuristic defocusing strategy flowchart

The solar field is partitioned into eight sectors based on heliostats’ polar angles, following the methodology
proposed by HALOS [47]. For each heliostat with coordinates (XHe, YHe), the corresponding polar angle θ is
computed using the distance d between the heliostats and the origin of the reference system.

d =
√
X2

He + Y 2
He (14)

The polar angle is considered positive if measured clockwise and is calculated as per Equation 15.

θ =

{
arccos (XHe

d ) YHe ≥ 0

2π − arccos (XHe
d ) YHe < 0

(15)
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Heliostats are arranged based on their polar angles relative to due east. Once sorted, heliostats are assigned to
sections in such a way that each section contains approximately an equal number of heliostats.

2.3. Soiling Model and Cleaning Strategy

Soiling predictions and cleaning strategy optimization are based on the work by Anderson et al. (2023) [44].

2.3.1. Soiling Losses Prediction

In accordance with the Dry-Deposition Soiling Model delineated by Picotti et al. (2018) [36], the cumulative
number of dust particles falling on the heliostat at time t is shown by Equation 16. D is the spherical particle
diameter and ni (D) is the deposition rate during the sampling period ∆t of meteorological measurements.

Nt (D) =

t∑
i=1

ni (D) ·∆t (16)

The reflective area loss due to soiling is computed incorporating a (θt, D), the area lost for a particle of diameter
D and at incidence angle θt.

Aloss
t (θt) =

∫ ∞

0

Nt (D) · a (θt, D) dD (17)

Under the assumption of well-separated particles on the surface, the area lost encompasses shaded and blocked
regions of the reflector while subtracting the overlapping area.

a (θt, D) = Ashade (θt, D) +Ablock (θt, D)−Aoverlap (θt, D) = 2 · πD2

4 cos θt
−Aoverlap (θt, D) (18)

As the incidence angle approaches zero, the area loss simplifies to a (θ,D) = πD2

4 , representing the cross-sectional
area of the dust particle. A geometry factor g is defined as the ratio between the generic reflective area loss and
that with normal incidence angle. If no overlap is assumed, g is expressed as per Equation 19.

g = a (θt, D) · 4

πD2
=

πD2

2 cos θt
· 4

πD2
=

2

cos θt
(19)

This approximation can be adopted for particles below 100µm and incidence angles above 1 . The area loss can
be approximated through the geometry factor, where Anorm

t is the total area loss with normal incidence angle.

Aloss
t (θt) =

∫ ∞

0

Nt (D) · g · πD
2

4
dD =

2

cos θt
·
[
π

4

∫ ∞

0

D2 ·Nr (D) dD

]
=

2

cos θt
·Anorm

t (20)

The reflectance is computed according to Equation 21, where Amirror is the mirror reflective area and ρ0 is
the as-clean reflectance.

ρ̂t (θt) = ρ0

(
1− Aloss

t

Amirror

)
= ρ0

(
1− 2

cos θt

Anorm
t

Amirror

)
(21)

Finally, the surface roughness ratio hr/z0 of the Dry-Deposition Soiling Model is estimated using a least means
squared fit between measured and predicted reflectance values. The Dry-Deposition Soiling Model is then
employed to predict soiling rates for a solar field, based on meteorological data and solar field design conditions.

2.3.2. Cleaning Strategy Optimization

The tool employed to optimize the deployment of cleaning resources, named HelioSoil, is a cleaning heuristic
operating on a fixed-frequency time base. This approach aims to strike a balance between the costs associated
with cleaning the heliostat field and the productivity of the power plant. The solar field is divided into J
sectors, each represented by a representative heliostat. Within each sector, all heliostats are assumed to have
the same soiled area and incidence angle. The parameter R denotes the number of sectors that can be cleaned
by M cleaning crews in one day, leading to F full-field cleans per year. The value of R depends on the chosen
technology and the size of the cleaning crew. The optimal values for M and F are computed by minimizing the
total cleaning cost.

TCC (M,F ) = Ccl + Cdeg (22)
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The direct cleaning cost Ccl account for the cost of the cleaning truck Ctruck with a lifetime of b years, operator
salaries Csalary, maintenance costs Cmaintain, and water and fuel expenses Cw&f. Atotal

j represents the total
heliostat area of the j-th sector.

Ccl (M,F ) =

(
Ctruck

b
+ Csalary + Cmantain

)
M +

J∑
j=1

Cw&f ·Atotal
j · F (23)

The degradation cost Cdeg accounts for the difference in revenues between pristine field conditions and those
affected by soiling and the adopted cleaning schedule. P is electricity sale price, CO&M is the price of O&M
costs unrelated to cleaning, wclean

t and wsoil
t are the electrical powers generated from a clean solar field and form

a soiled one, respectively.

Cdeg (M,F ) =
(
P − CO&M) T∑

t=1

(
wclean

t − wsoil
t

)
∆t (24)

The cleaning strategy optimization is based on the following assumptions:
• Optical efficiencies are obtained interpolating the values in a lookup table, built simulating the solar field

performance with SolarPILOT Image Size Priority aiming strategy for discrete solar angles.
• Continuous dispatch policy is assumed, without considering thermal energy storage.
• The cost metrics is fixed for all the solar field configurations.
• The economic parameters are those stated by Anderson et al. [44], adjusting the cleaning speed for 7.5

hours-long shifts and converting them into USD.

The soiling rate of each mirror is updated for each time step. Nt,j and Nt+1,j represent the cumulative number
of particles before and after the cleaning event, respectively. ηcl ∈ [0, 1] is the cleaning efficiency and D is the
cleaning decision given for the considered cleaning schedule.

Nt+1,j =

{
nt,j (D) +Nt,j (D) (1− ηcl (D)) Dt+1,j = 1

nt,j (D) +Nt,j (D) Dt+1,j = 0
(25)

2.4. Drivers Failure

Drivers failure problem is a Markov decision process, whose schematic is shown in Figure 6. In the picture, N
represents the number of heliostats, λ the failure rate, and Rµ the repair rate. The analysis operates under the
following assumptions:

• Heliostats are treated as identical assets, sharing the same efficiency.
• Failure rates are assumed to be constant over time, with no consideration for aging effects.
• Repair rates are considered constant: the number of repair crews R is constant and the n crews working

on a single heliostat can repair it n times faster.
• The steady-state analysis indicates how many heliostats are down but does not identify which specific

heliostats have failed.
• The steady-state analysis is pessimistic, as steady state is achieved after an extended period. This implies

that the distribution will show more heliostats down in the initial years than it should actually be.

Figure 6: Markov decision process

Given the number of heliostats in the solar field, the heliostats failure rate, the repair rate, and the number
or workers, the steady-state probability distribution of the number of heliostats subjected to failure, pss, is
computed. The availability target, Āhel, and the repair rate are set, and the number of workers is tuned
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accordingly. The resulting steady-state probability distribution allows for the computation of the number of
heliostats that are down in steady state, nhel,down. The reliability analysis is conducted for the entire plant,
thus considering the heliostats arrays all together.

nhel,down = nhel · (1− Āhel) (26)

Together with the reliability analysis, an economic analysis is undertaken because failures affect both the energy
collected on the receiver surface and O&M costs. Firstly, the power collected on the receiver Qfin, as obtained
from the algorithm described in Section 2.2, must be penalized. If defocusing does not occur, the power incident
on the receiver is reduced by a factor equal to the availability target, as per Equation 27. If defocusing occurs,
it is assumed that the first heliostats to be defocused are those subjected to failure. The actual availability is
computed as shown in Equation 28, and the power is penalized as before.

Qrec
t = Āhel ·Qfin

t

Ahel =
nhel − (nhel,down − nhel,defocused)

nhel

(27)

(28)

Secondly, the O&M costs are increased due to the necessity of repairing the broken drivers. The repair cost
rate can be computed given the probability pss,0 of having no heliostats down, the average cost to fix one failure
Cfailure accounting for both labour and materials, and the number of operating hours Hop.

Crepair = Cfailure · (1− pss,0) · Rµ ·Hop

Cfailure = Cworker ·
nworkers

Rµ
+ Cp&t

(29)

(30)

The reliability and economic analysis assumptions are shown in Table 5 and Table 6. The failure rate is defined
based on SolarOne power plant data [45], while workers salaries and material costs are based on SolarTwo power
plant data [49] accounting for inflation.

Table 5: Reliability analysis assumptions

Parameter Value

Availability Āhel 97%

Failure rate λ 6.13× 10−5 failure/hour

Repair rate Rµ 1 repairs/hour/worker

Table 6: Economic analysis assumptions

Parameter Value

Worker salary Cworker 40USD/hour/worker

Parts and tools Cp&t 230USD/repair

Operating hours Hop 3828 hours/year

2.5. Dispatching strategy and Thermal Energy Storage

As a result of the steps described in the previous sections, the power collected on the receiver surface, Qrec,
is obtained for each time step for the single solar field array. The power absorbed by the HTF accounts for
receiver absorbance and for thermal losses, including convective, radiative, and piping losses. For the single
solar field array, QHTF, array is computed considering a constant thermal power loss, Qloss.
Following the algorithm outlined in Section 2.2 ensures that Qrec complies with receiver saturation conditions
and does not exceed Qthreshold. Further validation is required regarding receiver deprivation conditions (refer to
Equations 31): if the power incident on the receiver is less than the thermal losses, the receiver is deactivated,
and the power absorbed by the HTF is set to zero.

QHTF, array
t =

{
Qrec

t −Qloss Qrec
t > Qloss

0 Qrec
t ≤ Qloss (31)

From this point onward, as the dispatching strategy and TES come into consideration, the focus shifts to the
entire plant rather than an individual solar field array. The total power absorbed by the HTF is calculated
considering the total number of solar field arrays narray.

QHTF
t = QHTF, array

t · narray (32)

Given the power block power rated power PCSP, the rated thermal power to drive the turbine at full load,
QHTF, PB, max, and the TES capacity, ETES, max, are computed. ηPB is the power block efficiency and hTES
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represents the thermal energy storage hours.

QHTF, PB, max =
PCSP

ηPB

ETES, max = QHTF, PB, max · hTES

(33)

(34)

The power absorbed by the HTF can be directed either to the power block (QHTF, PB) or to the TES (QHTF, TES).
In cases where both are saturated, any excess power is dissipated (QHTF,diss). The yearly electricity production
and energy dissipation can be computed as shown in Equation 35 and Equation 36 respectively.

EE =

8760∑
t=1

QHTF, PB
t · ηPB

Ediss =

8760∑
t=1

QHTF, diss
t

(35)

(36)

Two dispatching options are available and discussed in the following sections.

2.5.1. Full Load Operation

The power plant is operated prioritizing full-load operation of the turbine: if the receivers thermal power output
is not enough, the missing thermal energy is taken from the TES, if available. If such thermal output exceeds
the maximum thermal power to be sent to the power block, the excess heat is sent to the TES, if there is
available capacity. Finally, if the storage is full, the excess heat is dissipated. The total power absorbed by
the HTF is compared with the maximum power to be sent to the power block and four dispatching options are
defined. Several thermal energy storage hours, ranging from 0 h to hmax, are considered. hmax corresponds to
the maximum TES size explored, leading to null yearly thermal energy dissipation.

Option 1. If QHTF
t < QHTF, PB, max and ETES

t−1 −
(
QHTF, PB, max −QHTF

t

)
·∆t ≥ 0:


QHTF, PB

t = QHTF, PB, max

QHTF, TES
t = −

(
QHTF, PB, max −QHTF

t

)
QHTF, diss

t = 0

ETES
t = ETES

t−1 +QHTF, TES
t ·∆t

(37)

Option 2. If QHTF
t < QHTF, PB, max and ETES

t−1 −
(
QHTF, PB, max −QHTF

t

)
·∆t < 0:



QHTF, PB
t = QHTF

t +
ETES

t−1

∆t

QHTF, TES
t = −

ETES
t−1

∆t

QHTF, diss
t = 0

ETES
t = 0

(38)

Option 3. If QHTF
t ≥ QHTF, PB, max and ETES

t−1 +
[
QHTF

t −QHTF, PB, max
]
·∆t ≥ ETES, max:



QHTF, PB
t = QHTF, PB, max

QHTF, TES
t =

ETES, max − ETES
t−1

∆t

QHTF, diss
t = QHTF

t −QHTF, PB
t −QHTF, TES

t

ETES
t = ETES, max

(39)

Option 4. If QHTF
t ≥ QHTF, PB, max and ETES

t−1 +
[
QHTF

t −QHTF, PB, max
]
·∆t < ETES, max:
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
QHTF, PB

t = QHTF, PB, max

QHTF, TES
t = QHTF

t −QHTF, PB, max

QHTF, diss
t = 0

ETES
t = ETES

t−1 +QHTF, TES
t ·∆t

(40)

2.5.2. Load-Based Operation

The power plant is operated with the goal of matching a pre-specified load curve. For each time step, the
load curve provides the power to be produced by the plant, Pdes, corresponding to a HTF thermal power of
QHTF,des. If the HTF thermal power exceeds the request by the power block, the excess is sent to the TES or
dissipated, depending on the available capacity. If the HTF thermal power is not enough, the missing thermal
energy is taken from the TES. If the TES energy is not enough, part of the load, Puns, is not satisfied. The
total power absorbed by the HTF is compared to the thermal power required by the power block and four
dispatching options are defined. Several thermal energy storage hours, ranging from 0 h to hmax, are considered.
hmax corresponds to the maximum TES size explored, allowing to fully satisfy the load curve.
The load curve to be followed by the CSP plant is obtained gathering hourly electricity production data from
the Australian Energy Market Operator (AEMO) and categorizing them by source, distinguishing between
renewables-based and combustion-based sources (refer to Figure 7(a)). The residual load curve represents
the electricity production that must still be met by renewables and is determined by subtracting the electricity
generated by combustion-based plants from the total production. It is subsequently normalized and scaled with
respect to the nominal capacity of the CSP plant (refer to Figure 7(b)).

((a)) Queensland dispatch plot, 1 Jan - 3 Jan ((b)) CSP plant residual load curve, 1 Jan - 3 Jan

Figure 7: Queensland dispatch plot and residual load curve

Option 1. If QHTF
t < QHTF, PB, des

t and ETES
t−1 −

(
QHTF, PB, des

t −QHTF
t

)
·∆t ≥ 0:



QHTF, PB
t = QHTF, PB, des

t

QHTF, TES
t = −

(
QHTF, PB, des

t −QHTF
t

)
QHTF, diss

t = 0

ETES
t = ETES

t−1 +QHTF, TES
t ·∆t

P uns
t = 0

(41)

Option 2. If If QHTF
t < QHTF, PB, des

t and ETES
t−1 −

(
QHTF, PB, des

t −QHTF
t

)
·∆t < 0:
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

QHTF, PB
t = QHTF

t +
ETES

t−1

∆t

QHTF, TES
t = −

ETES
t−1

∆t

QHTF, diss
t = 0

ETES
t = 0

P uns
t =

(
QHTF, PB, des

t −QHTF, PB
t

)
· ηPB

(42)

Option 3. If QHTF
t ≥ QHTF, PB, des

t and ETES
t−1 +

(
QHTF

t −QHTF, PB, des
t

)
·∆t ≥ ETES, max:



QHTF, PB
t = QHTF, PB, des

t

QHTF, TES
t =

ETES, max − ETES
t−1

∆t

QHTF, diss
t = QHTF

t −QHTF, PB
t −QHTF, TES

t

ETES
t = ETES, max

P uns
t = 0

(43)

Option 4. If QHTF
t ≥ QHTF, PB, des

t and ETES
t−1 +

(
QHTF

t −QHTF, PB, des
t

)
·∆t < ETES, max:



QHTF, PB
t = QHTF, PB, des

t

QHTF, TES
t = QHTF

t −QHTF, PB, des
t

QHTF, diss
t = 0

ETES
t = ETES

t−1 +QHTF, TES
t ·∆t

P uns
t = 0

(44)

2.6. Indicators

Given a solar field layout, for each TES coupling, the following indicators are computed.

Energy loss due to defocusing and dissipation. The defocusing energy loss is defined as the ratio between
the yearly energy loss due to heliostats defocusing, Edef, and the yearly energy that could be reflected on
the receiver if all the heliostats were focused and no saturation constrain existed, Emax (Equation 45). The
dissipation energy loss is defined as the ratio between the yearly energy loss due to dissipation, Ediss, and the
yearly energy absorbed by the HTF, EHTF (Equation 46). The total energy loss is given by the summation
of these two contributions.

eloss,def =
Edef

Emax · 100%

eloss,diss =
Ediss

EHTF · 100%

(45)

(46)

Specific electricity production. The electricity production specific to the solar field area is defined as the
ratio between the yearly electricity production, EE, and the area of the solar field Asf. It depends on the solar
field size and coupled TES capacity, as well as on the adopted dispatching strategy.

EEspecific =
EE

Asf
(47)

Levelized Cost of Electrcity. The Levelized Cost of Electricity depends on the solar field size and TES
capacity, as well as on the adopted dispatching strategy. CAPEX and OPEX, respectively capital expenditure
and operating expense, will be detailed in the following sections. LT is the plant lifetime.

LCOE =
CAPEX

LT +OPEX

EE
(48)
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2.6.1. CAPEX

CAPEX is the capital expenditure to build the plant, characterized by direct and indirect costs, computed as
indicated by System Advisor Model (SAM) [50]. The tower cost is obtained by exponentially scaling the fixed
tower cost, Ctower, fixed, based on a scaling exponent k and the tower height htower.

Ctower, tot =
1

2
· Ctower, fiexd · ek·htower (49)

The receiver cost is determined by scaling the reference receiver cost, Creceiver, ref, using the ratio of the receiver
area Arec to the reference receiver area Arec, ref, adjusted by the exponent krec.

Creceiver, tot = Creceiver, ref ·
(

Arec

Arec, ref

)krec

(50)

The site improvement cost is computed by multiplying the specific cost of land improvement, Csite, tot, by the
total solar field reflective area, Asf. The heliostat field cost is calculated by multiplying the specific cost of the
heliostat field, Cheliostat, by the total solar field reflective area, Asf.

Csite, tot = Csite ·Asf

Cheliostat, tot = Cheliostat ·Asf

(51)
(52)

The balance of plant (BOP) cost is given by the specific cost, CBOP, ref, multiplied by the power cycle rated
power. The power cycle (PC) cost is given by the specific cost, CPC, ref, times the power cycle rated power.

CBOP = CBOP, ref · CCSP

CPC = CPC, ref · CCSP

(53)
(54)

The TES cost is computed as the specific cost, CTES, multiplied by the TES capacity, ETES.

CTES = CTES, ref · ETES (55)

The contingency cost is given by the contingency rate, kcont, times the Total Direct Cost (TDC). The TDC is
computed for the entire CSP plant, considering all the heliostat arrays.

Ccont = kcont · TDC
TDC = (Ctower, tot + Creceiver, tot + Csite, tot + Cheliostat) · narray + CBOP + CPC + CTES + Ccont

(56)
(57)

Land cost, sales tax cost, and EPC (engineering, procurement and construction) and owner costs contribute to
the Total Indirect Cost (TIC). The land cost is determined by multiplying the reference land cost, Cland, ref, by
the land area, Aland. The sales cost is obtained by multiplying the rsales, frac fraction of TDC and the land cost
by the sales tax rate, rsales. Finally, the EPC and owner costs are given by a fraction rEPC of the TDC.

Cland, tot = Cland, ref ·Aland

Csales, tot = rsales · (TDC · rsales, frac + Cland, tot)

CEPC = rEPC · TDC
TIC = Cland, tot + Csales, tot

(58)
(59)
(60)
(61)

In Table 7, the economic assumptions for CAPEX computation, as indicated by SAM [50], are summed up.

Table 7: CAPEX economic assumptions

Parameter Value

Fixed tower cost Ctower, fixed 3 000 000USD

Tower cost scaling exponent k 0.00113

Receiver tower height htower 52m

Receiver reference cost Creceiver, ref 103 000 000USD

Receiver reference area Arec, ref 1571m2

Receiver cost scaling exponent krec 0.7
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Specific site improvement cost Csite 16USD/m2

Specific heliostat field cost Cheliostat 66USD/m2

Balance of plant specific cost CBOP, ref 290USD/kWhe

Power cycle specific cost CPC, ref 1.040USD/kWhe

TES specific cost CTES, ref 22USD/KWht

Contingency kcont 7%

Specific land cost Cland, ref 10.000USD/acre

Sales tax rate rsales 5%

Sales tax rate portion rsales, frac 80%

EPC portion rEPC 13%

2.6.2. OPEX

OPEX is the operation and maintenance cost, and it is given by four contributions:
• Fixed cost by capacity, which depends on the CSP plant capacity (Equation 62).
• Variable cost by generation, which depends on the yearly electricity production (Equation 63).
• Cleaning cost, which depends on the adopted cleaning strategy and is computed and optimized as stated

in Section 2.3. It accounted for only when considering soiled field conditions.
• Repair cost, which depends on the heliostat field availability and is computed as stated in Section 2.4.

OPEXfixed = Cfiexd, ref · PCSP

OPEXvariable = Cvariable, ref · EECSP

(62)
(63)

The specific fixed and variable costs are computed as indicated by SAM, are shown in Table 8.

Table 8: OPEX economic assumptions

Parameter Value

Fixed specific cost Cfixed,ref 66USD/kW/year

Variable specific cost Cvariable,ref 3.5USD/MWhe

3. Case study description

The North West Queensland Hybrid Power Project (NWQHPP) is a hybrid power plant situated in Mount Isa,
Queensland, Australia. It features a CSP plant with a capacity of 56MW. The facility is equipped with 30
modular solar fields, each consisting of 2389 heliostats. In Table 9, CSP plant characteristics are summarized.

Table 9: CSP plant characteristics

Parameter Value

Rated power PCSP 56MW

Power block efficiency ηPB 0.35

Solar field arrays narray 30

Heliostats per array nhel 2389

Lifetime LT 30 years

It is assumed that all heliostat arrays exhibit identical behavior, described by a reference solar field. This
solar field is associated to a flat plate receiver, and its characteristics are outlined in Table 10. Additionally,
Table 11 provides a summary of the heliostats properties.

19



Table 10: Receiver characteristics

Parameter Value

Maximum power Qthreshold 10MW

Tower height htower 52m

Receiver length lrec 4.5m

Receiver height hrec 4.5m

Receiver zenith θrec −35 deg

Receiver azimuth γrec 180 deg

Absorbance α 0.94

Thermal power loss Qloss 0.91MW

Table 11: Heliostat characteristics

Parameter Value

Heliostat height hhel 2m

Heliostat width whel 3.2m

Reflective surface ratio ρSR 0.97

Nominal reflectance ρ 0.956

Stow angle θstow 10 deg

Stow tilt θtilt 90 deg

3.1. Solar field configurations

Starting from the reference modular solar field, that from now on will be addressed as base case, several solar
field layouts are defined (refer to Figure 8). First, the undersized solar field layout is created by removing
heliostats from the base case to prevent defocusing throughout the year. The worst-case scenario is considered,
assuming pristine field conditions. For the base case pristine solar field, the most critical condition occurs on
July 21st at 12 p.m., when 200 heliostats are defocused. Through a trial-and-error procedure, heliostats are
removed from the edges of the base case layout until defocusing no longer occurs. In Figure 8, the layout of the
undersized solar field is depicted and corresponds to the pink heliostats. On the other hand, the first oversized
solar field layout is generated by adding to the base case the same approximate number of heliostats that were
removed in the undersized solar field. The same procedure is followed to create the other oversized layouts,
shown in Figure 8. The red, orange, yellow, green, blue and purple heliostats are added to get the oversized,
oversized - 2, oversized - 3, oversized - 4, oversized - 5, and oversized - 6 configuration, respectively.

Figure 8: Solar field layouts

The solar field layouts are characterized by the following parameters.

Total reflective area of the solar field. The total reflective area, Asf, is the product of the heliostat area,
Ahel, the number of heliostats in the solar field, nhel, and the reflective surface ratio, ρSR.

Asf = Ahel · nhel · ρSR (64)
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Solar Field Oversizing factor (SFO). The Solar Field Oversizing factor indicates the solar field oversizing
with respect to the receiver. It is defined as the ratio between the power reflected on the receiver surface at
design conditions, Qrec,design, and the maximum power, Qthreshold.

SFO =
Qrec,design

Qthreshold
(65)

The power reflected on the receiver at design condition is computed as shown in Equation 66. ηdesign is design
field efficiency. The design condition corresponds to midday of the spring equinox, with a DNI of 950W/m2.
Pristine field conditions are considered, and all heliostats are focused.

Qdesign = DNIdesign ·Asf · ηdesign (66)

Solar Multiple (SM). The Solar Multiple is the ratio between the net thermal power of the solar field arrays
at design conditions, QHTF, design, and the thermal power to run the power block at rated power, QHTF, PB, max.

SM =
QHTF, design

QHTF, PB, max
(67)

The power absorbed by the HTF at design conditions is computed considering the threshold receiver power and
the constant thermal energy loss. QHTF, design and the SM are the same for all solar field layouts.

QHTF, design = (Qthreshold −Qloss) · narray (68)

In Table 12 the characteristics of the solar field layouts are summarized.

Table 12: Solar field layouts characteristics

Solar field layout N.heliostats ∆Nhel Asf
[
m2

]
SFO [-] SM [-]

Undersized 2088 -301 388,869 0.87 1.59

Base 2389 0 444,927 1.00 1.59

Oversized 2702 +313 503,220 1.09 1.59

Oversized 2 3027 +638 563,748 1.20 1.59

Oversized 3 3364 +975 626,511 1.31 1.59

Oversized 4 3713 +1324 691,509 1.42 1.59

Oversized 5 4074 +1685 758,742 1.52 1.59

Oversized 6 4447 +2058 828,209 1.62 1.59

4. Results

The algorithm elaborated in Section 2.2 is employed with an hourly time step for both the base case solar field
and the configurations described in Section 3.1. SolarPILOT’s Image Size Priority and a heuristic defocusing
strategy are executed to determine the hourly power reflected on the receiver surface for each individual array.
This process is repeated for both pristine and soiled field conditions, with the soiling rate serving as input to
SolarPILOT, obtained as outlined in Section 2.3.1.

Subsequently, the analysis extends to encompass the entire CSP plant, rather than just a single array. Initially,
the cleaning strategy undergoes optimization with HelioSoil as detailed in Section 2.3.2. The optimal cleaning
schedule is determined by varying the number of trucks used in cleaning activities and the cleaning frequency,
aiming to minimize the total cleaning cost. Figure 9(a) and Figure 9(b) illustrate the total cleaning cost
trend, along with the corresponding degradation and cleaning costs, in relation to the number of trucks (ranging
from 1 to 3) and the frequency of cleanings, for the base case solar field. The TCC shows a general downward
trend with slight fluctuations. These curves terminate at the maximum number of yeraly cleanings achievable
with the given number of trucks. The minimum TCC value is marked by a red star, indicating 24 cleanings
per year with 2 trucks as the optimal combination. Moreover, the total cleaning cost is composed of the sum
of the cleaning cost, which increases with the number of trucks and cleanings, and the degradation cost, which
decreases with the number of cleanings and exhibits a fluctuating pattern.
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((a)) Total cleaning costs ((b)) Degradation and cleaning costs

Figure 9: Total cleaning cost, cleaning cost and degradation cost, base case solar field

The same procedure is repeated for the other solar field configurations. Table 13 summarizes the outcomes.
The number of optimal trucks employed in the cleaning activities is stuck at two, while the frequency of yearly
cleanings diminishes with the solar field size. The number of heliostats cleaned has a fluctuating downward
trend, as well as the cleaning cost. The downward trend arises from the diminished cleaning capacity of a larger
solar field, given the size of the cleaning fleet. On the other hand, the fluctuation stems from the adjusted
cleaning speed, influenced by the length of the cleaning corridors and the time allocated for cleaning during the
work shift. During a shift, more favourable layouts enable an extra corridor to be cleaned.

Table 13: Optimal cleaning strategy results

Field
Layout

Optimal
Trucks

Optimal cleanings
[cleanings/year]

Heliostats cleaned
[heliostats/year]

Cleaning cost
[USD/year]

Undersized 2 30 1,753,920 306,434

Base 2 25 1,720,080 284,176

Oversized 2 21 1,702,260 293,117

Oversized 2 2 19 1,725,390 294,858

Oversized 3 2 17 1,614,720 294,124

Oversized 4 2 15 1,670,850 290,753

Oversized 5 2 13 1,588,860 280,943

Oversized 6 2 12 1,600,920 281,955

Furthermore, the drivers failure analysis is conducted according to Section 2.4. Table 14 summarizes the
outcomes. Ensuring the desired availability of heliostats necessitates a higher number of workers to address the
growing number of malfunctioning drivers, consequently leading to increased repair costs.

Table 14: Drivers reliability and economic analysis results

Field Layout nhel nhel,tot nhel,down,tot nworkers Crepairs [USD/year]

Undersized 2,088 62,640 1,879 3.73 1,451,219

Base 2,389 71,670 2,150 4.27 1,533,501

Oversized 1 2,702 81,060 2,432 4.82 1,619,063

Oversized 2 3,027 90,810 2,724 5.40 1,707,905

Oversized 3 3,364 100,920 3,028 6.01 1,800,028
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Oversized 4 3,713 111,390 3,342 6.63 1,895,431

Oversized 5 4,074 122,220 3,667 7.27 1,994,115

Oversized 6 4,447 133,410 4,002 7.94 2,096,078

Both cleaning strategy optimization and drivers failure analysis facilitate the identification of additional O&M
costs to be included in the final economic assessment and contribute to penalizing the energy collected on the
receiver. Moreover, the total energy absorbed by the HTF is computed in accordance with Section 2.5, and the
electricity produced is determined based on the selected dispatching strategy, whether full-load or load-based
turbine operation. The LCOE analysis encompasses exploration of various TES size couplings. In Section 4.1
and Section 4.2 the results for the two available dispatching strategies are detailed.

4.1. Full Load Operation Results

Figure 10(a) and Figure 10(b) show the trend of the LCOE as a function of the TES size for each solar
field configuration, respectively considering pristine and soiled field conditions. These curves are characterized
by a minimum LCOE: the corresponding TES size represents the optimal one because it leads to the most
cost-effective TES-coupling, balancing costs and electricity production.

((a)) LCOE clean field condition ((b)) LCOE soiled field condition

Figure 10: LCOE vs TES size, clean and soiled solar fields, full-load operation

The minimum LCOEs for each heliostat field configuration can be compared to determine the global minimum,
thereby identifying the optimal solar field size, as illustrated in Figure 11 where the optimal configuration is
indicated by a star. The corresponding optimal TES hours, yearly electricity production, percentage energy
loss, CAPEX and OPEX are summarized in Table 15 and Table 16. In Table 17 and Table 18 CAPEX and
OPEX costs breakdown are shown, for clean and soiled solar fields respectively. Differences are highlighted.

The minimum LCOE trend initially exhibits a sharp decline, which gradually levels off until reaching the
minimum. Within this range, the LCOE experiences slight fluctuations among the configurations, indicating
that an increase in the number of heliostats results in only marginal improvements in LCOE reduction.
In general, given a solar field layout, the LCOE increases when considering soiled field conditions, primarily due
to the electricity production penalization and the additional cleaning costs, which must be accurately accounted
for in a comprehensive techno-economic assessment. However, under turbine full-load operation, the Oversized
5 configuration consistently achieves the minimum LCOE, regardless of whether clean or soiled conditions are
considered. A marginal 1.8% increase in the optimal LCOE is noted when soiled conditions are taken into
account. Correspondingly, the optimal TES hours, which typically scale with the solar field size, are 7.0 and
6.5 hours for clean and soiled fields, respectively. Considering soiling during the design phase, in fact, results
in a reduction in the electricity production, and therefore a smaller TES size is required.
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Figure 11: Optimal LCOEs, clean and soiled solar fields, full-load operation

Table 15: Minimum LCOEs, corresponding TES hours, and indicators. Pristine field condition

Clean Field Condition

Field
Layout

LCOE min
[USD/MWh]

TES hours
[h]

EE
[MWh]

eloss,tot

[-]
CAPEX
[MUSD]

OPEX
[MUSD/year]

Undersized 123.00 3.0 171,049 0.23% 449.6 6.1

Based 110.69 4.5 195,967 0.46% 462.7 6.3

Oversized 101.31 5.5 219,867 3.15% 473.9 6.5

Oversized 2 97.29 6.0 233,796 7.85% 483.1 6.6

Oversized 3 95.35 6.5 243,397 12.61% 492.6 6.8

Oversized 4 94.32 6.5 250,114 17.26% 500.2 6.9

Oversized 5 93.92 7.0 256,148 21.14% 510.3 7.0

Oversized 6 94.02 7.0 260,084 24.93% 518.4 7.2

Table 16: Minimum LCOEs, corresponding TES hours, and indicators. Soiled field condition

Soiled Field Condition

Field
Layout

LCOE min
[USD/MWh]

TES hours
[h]

EE
[MWh]

eloss,tot

[-]
CAPEX
[MUSD]

OPEX
[MUSD/year]

Undersized 126.17 3.0 169,110 0.12% 449.6 6.3

Based 113.61 4.5 193,291 0.27% 462.7 6.5

Oversized 103.84 5.5 217,201 2.56% 473.9 6.8

Oversized 2 99.29 6.0 231,964 6.94% 483.1 6.9

Oversized 3 97.33 6.5 241,339 11.52% 492.6 7.1

Oversized 4 96.13 6.5 248,325 15.90% 500.2 7.2

Oversized 5 95.69 6.5 253,434 20.01% 508.1 7.3

Oversized 6 95.80 7.0 258,072 23.35% 518.4 7.4
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Table 17: CAPEX and OPEX breakdown, clean solar field

Layout Under. Base Over. Over.2 Over.3 Over.4 Over.5 Over.6
C

A
P

E
X

[M
U

SD
]

Tower 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0

Receiver 146.9 146.9 146.9 146.9 146.9 146.9 146.9 146.9

Site imp. 6.2 7.1 8.1 9.0 10.0 11.1 12.1 13.3

Solar field 25.7 29.4 33.2 37.2 41.3 45.6 50.1 54.7

BOP 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2

PC 58.2 58.2 58.2 58.2 58.2 58.2 58.2 58.2

TES 10.6 15.8 19.4 21.1 22.9 22.9 24.6 24.6

Cont. 24.1 24.8 25.4 25.9 26.4 26.7 27.2 27.6

Land 17.0 17.7 18.5 19.2 20.1 21.0 21.9 22.9

Sales tax 15.6 16.1 16.5 16.8 17.1 17.4 17.8 18.0

EPC 48.0 49.3 50.5 51.4 52.4 53.1 54.1 54.9

O
P

E
X

[U
SD

/y
] Fixed 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7

Variable 0.9 1.0 1.2 1.2 1.3 1.3 1.4 1.4

Cleaning 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Repair 1.5 1.5 1.6 1.7 1.8 1.9 2.0 2.1

Table 18: CAPEX and OPEX breakdown, soiled solar field

Layout Under. Base Over. Over.2 Over.3 Over.4 Over.5 Over.6

C
A

P
E
X

[M
U

SD
]

Tower 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0

Receiver 146.9 146.9 146.9 146.9 146.9 146.9 146.9 146.9

Site imp. 6.2 7.1 8.1 9.0 10.0 11.1 12.1 13.3

Solar field 25.7 29.4 33.2 37.2 41.3 45.6 50.1 54.7

BOP 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2

PC 58.2 58.2 58.2 58.2 58.2 58.2 58.2 58.2

TES 10.6 15.8 19.4 21.1 22.9 22.9 22.9 24.6

Cont. 24.1 24.8 25.4 25.9 26.4 26.7 27.1 27.6

Land 17.0 17.7 18.5 19.2 20.1 21.0 21.9 22.9

Sales tax 15.6 16.1 16.5 16.8 17.1 17.4 17.7 18.0

EPC 48.0 49.3 50.5 51.4 52.4 53.1 53.9 54.9

O
P

E
X

[U
SD

/y
] Fixed 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7

Variable 0.9 1.0 1.2 1.2 1.3 1.3 1.3 1.4

Cleaning 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Repair 1.5 1.5 1.6 1.7 1.8 1.9 2.0 2.1

4.2. Load-Based Operation Results

The minimum LCOEs trend is obtained as per Section 4.1. A comparison between the results in full-load and
load-based operation in shown in Figure 12(a) and Figure 12(b). The corresponding optimal TES hours,
yearly electricity production, percentage energy loss, CAPEX and OPEX are summarized in Table 19 and
Table 20.

The minimum LCOE trend is the same experinced in full-load operation. Furthermore, in the load-based
operation scenario, electricity production decreases while energy dissipation increases compared to full load
operation. This decline in electricity production is attributed to the turbine not operating at full load, while the
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increase in energy dissipation results from limiting electricity production during the day and shifting it towards
the night. Consequently, the minimum LCOE is higher for each solar field configuration. The corresponding
TES size increases to accommodate fluctuations in the load curve and the requirement to fulfill nighttime
demand. Combining these factors, the minimum LCOE is consistently achieved for the Oversized 4 configuration,
regardless of whether the layout is pristine or soiled. A slight 1.6% increase in the LCOE is observed when
considering soiled field conditions. However, the corresponding optimal TES hours remain constant at 11.5.

((a)) Full-load operation ((b)) Load-based operation

Figure 12: Minimum LCOEs a function of the number of heliostst

Table 19: Minimum LCOEs, corresponding TES hours, and indicators. Pristine field condition

Clean Field Condition

Field
Layout

LCOE min
[USD/MWh]

TES hours
[h]

EE
[MWh]

eloss,tot

[-]
CAPEX
[MUSD]

OPEX
[MUSD/year]

Undersized 127.18 7.5 170,605 0.49% 469.4 6.1

Based 115.13 9.0 194,055 1.43% 482.5 6.3

Oversized 107.00 10.5 214,785 5.46% 495.9 6.5

Oversized 2 104.03 11.0 225,287 11.49% 505.1 6.6

Oversized 3 102.76 11.5 232,408 17.12% 514.7 6.7

Oversized 4 102.36 11.5 236,962 22.50% 522.3 6.8

Oversized 5 102.44 11.5 240,501 27.24% 530.1 7.0

Oversized 6 102.94 12.0 243,836 31.17% 540.5 7.1

Table 20: Minimum LCOEs, corresponding TES hours, and indicators. Soiled field condition

Soiled Field Condition

Field
Layout

LCOE min
[USD/MWh]

TES hours
[h]

EE
[MWh]

eloss,tot

[-]
CAPEX
[MUSD]

OPEX
[MUSD/year]

Undersized 130.32 7.5 168,781 0.32% 469.4 6.3

Based 117.95 8.5 191,071 1.42% 480.3 6.5

Oversized 109.28 10.0 212,187 4.87% 493.7 6.7

Oversized 2 105.89 11.0 224,047 10.35% 505.1 6.9

Oversized 3 104.55 11.5 231,197 15.72% 514.7 7.0
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Oversized 4 104.03 11.5 235,909 20.10% 522.3 7.1

Oversized 5 104.07 11.5 239,373 25.54% 530.1 7.2

Oversized 6 104.52 11.5 242,049 29.55% 538.3 7.4

4.3. Comparison

Depending on the dispatching scenario, the optimal solar field size varies: Oversized 5 is the best configuration
for full-load turbine operation, while Oversized 4 is preferred for load-based operation. In Table 21, the
minimum LCOEs and the corresponding TES sizes are summarised.

Table 21: LCOE and TES sizes summary

Full load operation Load based operation

Solar field
layout

min LCOE
[USD/MWh]

TES hours
[h]

Solar field
layout

min LCOE
[USD/MWh]

TES hours
[h]

Clean field Oversized 5 93.92 7.0 Oversized 4 102.36 11.5

Soiled field Oversized 5 95.69 6.5 Oversized 4 104.03 11.5

Figure 13 compares electricity production under clean and soiled conditions for these two optimal configura-
tions. Full-load dispatching results in higher electricity production in both clean and soiled conditions, thanks to
the larger solar field oversizing and turbine operation at nominal conditions. Conversely, load-based dispatching
requires a smaller solar field to meet reduced electricity demand.

Figure 13: Electricity production comparison

Figure 14(a) and Figure 14(b) compare CAPEX and OPEX for the optimal layouts, considering soiled field
conditions (worst case scenarios), for both dispatching options. Apart from variable production-based costs, the
primary distinction lies in the heliostat field cost and the storage cost, with the TES size being nearly twice as
large in the load-based scenario. A proper selection of the TES size should be based on the expected operational
profile of the power plant throughout its lifetime. In the design phase, considerations must include worst-case
scenarios, such as a soiled solar field, to factor in cleaning costs and reduced electricity production.
The receiver cost stands out as notably higher compared to other components. This disparity stems from the
reference values utilized in Equation 50 and summerized in Table 7, which are calibrated for larger-surface
receivers. While aligning with SAM’s standards, it is chosen to maintain this approach. Nevertheless, future
research could delve into a more detailed analysis of receiver costs.
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((a)) CAPEX ((b)) OPEX

Figure 14: CAPEX and OPEX comparison

5. Sensitivity Analysis

In this section a sensitivity analysis on the heliostats price is performed. The starting price, 66USD/m2, is low
with respect to average values, 127USD/m2 as stated by SAM [50], shifting the optimal solution towards larger
solar fields. The goal is exploring the effect of heliostats price increase on the solar field layout selection.

Figure 15 shows the trend of the minimum LCOEs as a function of the number of heliostats in the solar field,
for clean and soiled conditions, when the heliostats price varies from 66USD/m2 to 125USD/m2. The full-load
dispatching strategy is selected. The optimal solutions are indicated by the stars: as the price of heliostats
increases, the optimal configuration shifts towards smaller fields. Specifically, when the heliostats price reaches
125USD/m2, the optimal configuration shifts from a five-fold oversized field to a four-fold oversized solar field.
Across all optimal configurations, the coupled storage size remains fixed at 6.5 hours.

Figure 15: Sensitivity analysis, clean and soiled solar fields, full-load operation

Figure 16 showsthe trend of the minimum LCOEs as a function of the number of heliostats in the solar fields,
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for clean and soiled conditions respectively, when the heliostats price varies from 66USD/m2 to 125USD/m2.
The load-based dispatching strategy is selected. Consistently, when the heliostat price reaches 125USD/m2, it
triggers a transition from a four-fold oversized field to a three-fold oversized solar field in the optimal configu-
ration. The coupled storage size remains constant at 11.5 hours.

Figure 16: Sensitivity analysis, clean and soiled solar fields, load-based operation

The sensitivity analysis provides insights into the reasons behind the shift towards highly oversized solar fields
when considering a base heliostat price of 66USD/m2. When a price more in line with average values is taken
into account, the optimal configurations for the full load scenario would involve a four-times oversized solar
field, coupled with a 6.5-hour TES. Similarly, for the load-based scenario, a three-times oversized solar field,
coupled with an 11.5-hour TES, would be optimal. Results are summarized in Table 22.

Table 22: LCOE and TES sizes summary, sensitivity analysis

Full load operation Load based operation

Solar field
layout

min LCOE
[USD/MWh]

TES hours
[h]

Solar field
layout

min LCOE
[USD/MWh]

TES hours
[h]

Clean field Oversized 4 101.13 6.5 Oversized 3 109.40 11.5

Soiled field Oversized 4 102.99 6.5 Oversized 3 111.22 11.5

The minimum LCOE experiences a 7.5% increase in full-load operation and a 7% increase in load-based opera-
tion, regardless of whether the conditions are clean or soiled. The optimal TES hours remain unchanged.

6. Conclusions

In this study, a methodology for preliminary sizing the heliostat field of Solar Tower power plants is outlined,
aiming to achieve the best techno-economic compromise. This approach is comprehensive, integrating several
factors into the optimization procedure.

Initially, heliostat tracking is considered, with SolarPILOT’s Image Size Priority chosen as the designated aiming
strategy to evenly distribute thermal flux across the receiver surface. To adhere to the limit on maximum power
collected on the receiver, a custom defocusing and re-focusing strategy is implemented. Heliostats are defocused
and re-focused in groups of 8 and 4, respectively, until the constraint is met.
Soiling losses are then addressed in two ways: firstly, a validated physical model quantifies the heliostat soiling
rate, which is ultimately meant for penalizing the field optical efficiency and, consequently, the power collected
on the receiver. Secondly, the heliostat cleaning strategy is optimized in terms of the number of deployed trucks
and cleaning frequency, with resulting cleaning costs factored into O&M cost calculations.
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Additionally, a drivers failure analysis is conducted to penalize the power production based on the heliostat
availability and calculate additional O&M costs due to heliostat repairs.
The electric energy production by the CSP plant is computed under two dispatching options: turbine full-load
operation and residual load-curve based operation. The former involves running the turbine at nominal power
whenever possible, either using the power absorbed by the HTF or draining the TES. The latter entails adjusting
the turbine production to follow a pre-specified residual load curve.

This methodology is applied to a CSP facility in Mount Isa, Queensland, Australia, consisting of 30 heliostat
arrays. A modular solar field (base case) serves as reference to define further layouts, including an undersized
layout with no defocusing throughout the year and six oversized layouts. For each solar field layout - TES hours
combination, the LCOE is computed and the minimum values compared to find the globally optimal solution.
During the design phase, worst-case scenario considerations dictate the use of soiling conditions as a reference.

The results indicate that, for turbine full-load operation, the optimal configuration is a five-times oversized
solar field coupled with a 6.5-hour TES, resulting in an LCOE of 95.69USD/MWh. Conversely, for turbine
load-based operation, the optimal configuration is an four-times oversized solar field with an 11.5-hour TES,
resulting in a LCOE of 93.92USD/MWh. Design choices should be influenced by the expected turbine operation
throughout its lifetime.
Lastly, a sensitivity analysis on heliostats price is conducted. When the price increases from the base value
of 66USD/m2 to average commercial values of 125USD/m2, the optimal solar field size diminishes. For full-
load operation, the optimal LCOE becomes 102.99USD/MWh, corresponding to a four-times oversized solar
field. For load-based operation, the optimal LCOE becomes 111.22USD/MWh, corresponding to a three-times
oversized field. The optimal TES size remains unchanged.

In conclusion, this research demonstrates how to define and apply a preliminary solar field design methodology
to a real case study. Further developments could include integrating more sophisticated aiming strategies,
such as HALOS, as the NREL is resolving inconsistencies in the software to make it useful for future research.
Additionally, refining solar field layouts by considering not only the size but also the shape and placement of
heliostats could lead to further improvements.
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Abstract in lingua italiana

Affinché gli impianti solari termici a torre vengano adottati su scala globale, alcune problematiche fondamen-
tali dovranno essere affrontate, tra cui lo sporcamento degli eliostati. Questo fenomeno comporta perdite di
efficienza ottica e costi di gestione e manutenzione aggiuntivi dovuti alla necessaria pulizia degli specchi. Altra
sfida importante è la massimizzazione della potenza termica prodotta dal ricevitore, che dipende dalla strategia
di mira selezionata, che a sua volta infleunza l’efficienza termica e la vita utile del ricevitore stesso.
In questo contesto, la presente ricerca propone una metodologia per ottimizzare il design preliminare del campo
solare degli impianti solari a torre. Tale approccio integra un modello fisico per simulare le perdite dovute allo
sporcamento degli eliostati e ottimizza la strategia di pulizia attraverso un metodo euristico tempo-basato e con
frequenza fissata. Inoltre, viene introdotta un’analisi relativa ai possibili guasti degli eliostati.
Questa metodologia viene applicata all’impianto solare termico di Mount Isa, in Queensland, Australia. Sono
prese in considerazione diverse dimensioni del campo solare al fine di identificare la configurazione con il minor
Levelized Cost of Electrcity. I risultati indicano che un sovradimensionamento del campo solare di cinque volte,
accoppiato a uno storage termico di 6.5 ore, è la soluzione ottimale quando la turbina viene operata a potenza
nominale. Un sovradimensionamento di quattro volte, invece, accoppiato a uno storage termico di 11.5 ore,
è la soluzione migliore quando la turbina è destinata a seguire una curva di carico predefinita. Un’analisi di
sensitività sul prezzo degli eliostati mostra che le dimensioni ottimali del campo si riducono di una taglia quando
i prezzi raddoppiano, indipendentemente dalla strategia operativa della turbina.
In conclusione, la ricerca proposta contribuisce allo sviluppo di una metodologia comprensiva per il dimen-
sionamento del campo solare degli impianti a torre solare, integrando strategie di mira e considerazioni sullo
sporcamento degli eliostati, e sottolineando l’influenza delle strategie di dispacciamento e del prezzo degli elio-
stati sull’economia e perfromance dell’impianto.

Parole chiave: CSP, torre solare, campo solare, sporcamento, pulizia degli eliostati, strategie di mira
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