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Chapter 1

Introduction: what are the

seasons?

The concept of seasons is something that everyone has in mind, since it is part

of daily life. On the other hand, giving a shared and unique definition of what

the seasons are seems a harder task. Firstly, because there is not only a type of

seasons: there are astronomical seasons, meteorological seasons, but also the flu

season, the high season of a tourist destination, and so on. We are used to associate

the concept of seasons to everything that shows a certain periodicity, which we call

seasonality. But, if this periodicity is the seasonality, what is the formal definition

of seasons? This lack of clarity seems not to be confined to terminology and leads

to an ambiguity that can become limiting when, for example, we wonder what will

happen to the seasons in the future. A first approach for trying to give a shape to

the concept of seasons should start from seasonality itself.

Seasonality is a wide concept which affects many aspects of everyday life. How-

ever, the definition of seasonality is not straightforward: it could be defined in a

general way as a recurring pattern or even cycle that occurs at regular intervals

within a specific time frame, and it could be observed in a wide range of natural and

human made phenomena. Earth science disciplines (meteorology, botany, glaciol-

ogy, etc. etc.), but also economy, finance, epidemiology, and a wide range of other

sectors, show seasonal patterns.

The correct identification of seasonal patterns is a crucial step when dealing with

phenomena related to several of the above-mentioned sectors. A correct identifica-

tion of seasonality allows us to deeply investigate the features of the phenomenon

we are studying, and to achieve a better understanding of it. This has multiple pos-

itive repercussions, since it allows us to make better decisions and develop adequate

strategies for the specific problem, or even develop methods for forecasting.

While seasonality is a property which shows itself in the manifestation of a
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phenomenon, its source is often more difficult to investigate, as it is the result

of many mutually interacting factors. In meteorology, seasonality is the tangible

demonstration of the earth axis obliquity with respect to the rotation plane. In the

economy, e.g. in tourism, seasonal patterns are affected by climate and weather,

social customs (e. g. holiday periods), business customs and need for supply. In

epidemiology seasonality leads to the propagation of flu and other pathogens which

is determined by biological, social, and environmental factors. Thus, a first approach

to seasonality problems is often done investigating the behavior of the phenomenon,

rather than its causes. This approach is the so-called time series analysis.

In meteorological and climatic sciences seasonality is an element which plays a

central role. Being an essential element of Earth’s climate system, seasonality is used

to characterize the climate of different regions. Also projections of future evolution

of climate are analyzed looking at changes of the seasonal pattern. The ability to

reproduce seasonal patterns is also used for the validation of climate models, i.e.,

numerical models which simulate the behavior of Earth’s climate system.

Especially when dealing with meteorology and climate, we often refer to sea-

sonality using the concept of seasons. Although this could seem only a matter of

terminology, it is not. The seasons are the periods in which we artificially divide the

year, and last typically three months. Seasonality, being an oscillation, is typically

modeled using continuous functions, such as sinusoidal functions. This means that

somewhere stands the assumption that dividing the year in seasons is a good way

to describe the Earth’s climate system seasonality.

It is worth pointing out that in everyday language, when speaking of weather and

climate, we often use the word seasons ambiguously, referring to what are techni-

cally called astronomical seasons. The astronomical seasons are defined on rigorous

criteria, based on geometrical factors of rotation and revolution of the Earth. The

different behaviour of the meteorological weather in different periods of the year is

described by the so-called meteorological seasons. Astronomical and meteorological

seasons are strictly related: the inclination of the rotation axis with respect to the

rotation plan determines in different periods of the year a different distribution of

the solar radiation through the Earth’s surface. Nevertheless, meteorological and

astronomical seasons could not be treated as a single entity, since the response of

the weather at different insolations can vary considerably depending on the locality.

In this work we will use the word seasons referring to the meteorological seasons.

After this necessary digression on the nomenclature, we can go back to wondering

about the link between seasonality and meteorological seasons. Looking at it from

another point of view, if each of the 365 days in a year typically has its own climatic

behavior due to seasonality in a specific locality, then seasonality could be described
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by 365 values. The definition of the seasons implicitly assumes that the information

contained in these 365 values could be condensed in (typically) four values, one for

each season. Intuitively, this could seem a good description of the seasonal cycle.

If we look, for example, at the behavior of atmospheric conditions in January 1st

of any one year, and compare it to the behavior of January 1st of another year,

we will probably observe two different conditions. This is due to the variability of

the system at high frequencies. On the other hand, we can take all the January

1sts in a sufficiently wide range of years (typically 30 years, and in this case we are

talking about Climatology) and obtain a distribution of possible conditions for the

first day of the year. We will probably be able to observe that this distribution is

quite similar to the one obtained taking all the January 15ths, or January 30ths,

but different to the one obtained taking July 1st. Thus, grouping days with similar

distributions seems a logical approach.

Although, despite the extensive use we make of them, meteorological seasons

are more an heuristic concept than well defined entities. This is primarily due to

the fact that it is not possible to give a globally valid definition of meteorological

seasons. In fact seasonal patterns vary according to the locality (e.g. orography, veg-

etation, prevailing winds, etc.) and the specific physical variables that we take into

account. At midlatitudes, we often consider four seasons looking at temperatures: a

hot one (Summer), a cold one (Winter) and two transition seasons (Spring and Au-

tumn). In subtropical areas subjected to monsoonal dynamics, the seasonal division

is performed distinguishing between the monsoonal wet season and the dry season

And many other example could be found. These seasonal divisions are most of the

times based on heuristic consideration. When they are performed on more rigorous

criteria, it requires a long work for the identification of the physical variables and

threshold to be taken into account. Furthermore, the division into seasons usually

rarely recognizes a time resolution inferior to one month. The last problem we point

out is that the same division into seasons that is used nowadays, is always used

when analyzing the future projection obtained by climate models. There is multiple

evidence that in the last decades a wide range of seasonal patterns has changed, and

we can then assume that also the division into seasons should be constantly verified

and updated.

The first purpose of this work is to develop a methodology for the identification

of meteorological seasons in climatic datasets, trying to minimize the arbitrary as-

sumptions. This methodology will be constructed with the aim of being as general as

possible and consequently applicable to the most disparate cases. As we highlighted

before, approaching the problem of the division in seasons in a physically-driven way

shows many difficulties related to the variability with which seasonal patterns show



10 CHAPTER 1. INTRODUCTION: WHAT ARE THE SEASONS?

in different areas. Thus, we will try to use a data-driven approach, making use of a

series of machine learning tools. As we will explain, the power of machine-learning

relies on the fact that a set of algorithms could be instructed to autonomously

recognise the best criteria to use for the division in seasons.

Our second purpose is to find a way for evaluating how the seasons detected are

represented in different climate datasets. This would result in at least two insightful

applications. One the one hand, this will provide us of a tool for evaluating how

different datasets represent the seasons. For example, this can be used to robustly

analyze the presence of bias in the representation of seasonal cycle in climate models

. In light of what we said before, this could be a powerful tool in the validation

of climate models. On the other hand, this will allow us to study to what extent

the seasons we are experimenting nowadays are expected to change in the future,

making use of the projection made by climate models.

Both of our goals are pursued by trying to develop a general methodology. Such

methodology will be applied to a selected case study making use of total precipitation

and the surface air temperature, which are the two most used variables for climatic

characterizations, to define seasons.

This thesis is structured as follows. Firstly, in Chapter 2, we give a formal

overview of time series analysis and of the required assumptions in order to defining

the seasons starting from the concept of seasonality. Then, in Chapter 3, we de-

scribe the design of the machine learning algorithms that we chose for achieving our

purposes. Chapter 4 provides a brief description of the datasets we will use for a first

application of our methodology. These datasets are the ECMWF ERA5 Renalysis

for the recognition of seasons in the present and recent past, and the EC-Earth3

Earth System Model for the tracking of seasons evolution. Finally, in Chapter 5 we

apply our methodology to a case study, which is the Hindu Kush Karakoram Hi-

malaya region, in the northern part of the Indian subcontinent. The main scientific

questions we will try to address in this part are:

• Is the division in seasons that we are currently using correct? We will try to

answer this question both about the number of seasons and the dates we use

for the splitting.

• How are the seasons recognised by machine learning represented in a climate

model?

• How are these seasons expected to change in the future?

It is worth noting that this work represents an original attempt to apply meth-

ods taken from different domains to a problem that is not well documented in the
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literature, such as the definition of the meteorological seasons. Thus, we will try to

present the results obtained in this dissertation with a special focus on what can be

improved or needs further investigation.
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Chapter 2

Seasons and seasonality

As seen in the previous chapter, there is a lack of shared and uniform definitions of

meteorological seasons, and it is not easy to find a common ground even to define

methods for their recognition. This is mainly due to the differences among seasons

behavior in different regions of the world, in timing, amplitude of the signal and

involved variables. In this work we will not try to fill this lack of definitions in

an exhaustive way, being generality and flexibility the main objectives we want to

achieve. Nevertheless, some general criteria and assumptions about what makes

seasons distinguishable elements of the climate system must be introduced, in order

to have a starting point for the construction of our methodology. In this chapter

we will try to formulate a work hypothesis, which relies on some basic concepts of

time series analysis. Section 2.2 contains a formal treatment about seasonality in

time series analysis, seen as a deterministic signal. In section 2.3 the application

to multidimensional climatic data is presented, along with the assumptions which

allow us to transform this continuous signal into a finite number of similar periods

within them, which would be the seasons.

2.1 Seasonality on time series analysis

Since seasonality is a wide concept which affects phenomena in a wide range of

sectors, there are many ways to approach its evaluation. Neglecting the source of

seasonality and focusing on its phenomenology is the approach used in the so-called

time series analysis. Nevertheless, seasonality is not the only component present in

time series, and it is not possible to focus on seasonality completely neglecting the

other components. Thus, the time series components which are taken into account

and the way in which they are investigated could vary depending on the purpose of

the analysis.

13
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In this section we will try to give a theoretical overview of the basic principles of

time series analysis, favoring the point of view that is usually held for the analysis

of climatic time series. The main focus in this part is the recognition of seasonal-

ity. Thus, we will prefer an approach focused on seasonality rather than on formal

completeness. This part is mainly inspired by [Hamilton, 1994] and [NIST, 2012],

which could be used as references for a complete treatment.

2.1.1 Basic definitions

Consider a time-series X of T real values generated by a stochastic process A:

X = {x1, x2, . . . , xt, . . . , xT}, xt ∈ RK (2.1)

Assume each xt to be a particular realization of a generic probability density

function ft, which is determined by an undefined set of parameters γt: we will denote

the probability of getting xt by ft as ft(xt|γt).
Consider now an ensemble E of N time-series generated by the same process A:

E = {X1, X2, ..., XN , ..., XN} (2.2)

It’s convenient to rearrange data in a TXN matrix D where each row represents

a time step and each column a time series:

D =


x1
1 . . . xN

1
...

. . .
...

x1
T . . . xN

T

 (2.3)

We can easily observe that if K > 1 then D is a three-dimensional tensor. Each

row of D is thus ruled by the same probability density function ft, and we can

summarize these functions in a column vector F :

F =


f1(x1|γ1)

...

fT (xT |γT )

 (2.4)
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The simultaneous knowledge of all the functions ft and the parameters γt gives

the statistic of the time series generated by the process A, which is the goal of a

parametric approach. This allows to compute some useful indicators about the time

series, which could be arranged in column vectors:

• Expectation (or ensemble mean):

µt = E[Xt] =

∫ ∞

−∞
xtft(xt|γt)dxt (2.5)

Each row of F has its own expectation value, thus we can define the col-

umn vector M of these values, that will represent the ensemble mean at each

timestep:

M =


µ1

...

µT

 (2.6)

• Central moments:

σk
t = E[(Xt − µt)

k] =

∫ ∞

−∞
(xt − µt)

kft(xt|γt)dxt (2.7)

As for M , thus we can define the column vector Sk of the moment of each row

of F :

Sk =


σk
1
...

σk
T

 (2.8)

• Autocovariance sequence:
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ρt,t−l = E[(Xt−µt)(Xt−l−µt−l)] =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
(xt−µt)(xt−l−µt−l)ft(xt|γt)dxt

(2.9)

The autocovariance is defined for each row and for each possible lag, and thus

the result could be summarized in a column vector R of length T ∗ T :

R =



ρ1,1

ρ1,2
...

ρ1,T

ρ2,1
...

ρT,T


(2.10)

If we knew the explicit form of F , we would be able to perform a complete

analysis of our time series. In fact, the information contained in F would allow us

to know the statistical behavior of the process A at each time step. In this scenario,

also seasonality would be described by the statistic.

The first problem is that when approaching the analysis of a time-series, the

a priori knowledge of both ft and γt is most of the time unsatisfied. A statistical

approach could be supposing the shape of functions ft and then estimating the best

parameters γt. This would require the ensemble of realizations E. Here the second

problem raise: dealing with climatic data, especially when dealing with observations,

we usually only have one realization X and not the ensemble E.

These problems could be bypassed with the concepts of stationarity and ergod-

icity, which will be detailed in the next section. Briefly, we can assume that our

time series shows certain stability characteristics which allow us to treat a single

realization as an ensemble realization.

2.1.2 Stationarity and ergodicity

As said before, when the ensemble of realization of a process A is not available, the

way we have to statistically investigate the properties of a time series is suppose

that the time series itself could be treated as an ensemble realization. This is made
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using the concept of stationarity, in different grades. As we will see with the formal

requirements, stationarity is an assumption. In fact, we assume that if we had an

ensemble realization, it would behave in a certain way.

A process is said to be strictly stationary if each time step shows the same

statistical behavior. Formally:

ft1(xt1|γt1) = ft2(xt2|γt2) ∀xt1, xt2 (2.11)

Which is equivalent to require F to be constant, and consequently M , Sk and

R. This definition is too strong for most of the interesting time-series, and not

applicable to climate data. Furthermore, a time series which has, by definition,

no statistical difference between different timesteps, obviously loses the interesting

features we are looking for, such as seasonality.

There is a wider condition we can impose to time series, called Wide-Sense

Stationarity (WSS). A process is said to be WSS if:

1. For each time step the expectation value is constant:

µt1 = µt2 := µ ∀t1, t2 (2.12)

2. The expectation value of the squared signal is finite:

E[|xt|2] < ∞ ∀t (2.13)

3. The autocovariance sequence varies only in function of the lag:

ρxx(t1, t2) = ρxx(t1− t2, 0) ∀t1, t2 (2.14)

A WSS process shows a certain regularity between the statistical behaviour of

different timesteps. This regularity is wider than the one imposed by strictly sta-

tionarity since, for example, central moments could vary through different timesteps.
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WSS allows to collapse the statistical indicator of the time series. M could be

collapsed in a single value, and R, being a function only of the lag, could be reduced

in a 2 ∗ T − 1 column vector. Since R is symmetric respect to l = 0, it is possible to

consider only one side and redefine:

R =


ρ1
...

ρT

 (2.15)

The main advantage of strict stationarity and WSS relies in the fact that we

can consistently redefine the statistical indicators shown before (expectation, central

moments, and autocovariance) using the average on time dimension. Considering

our starting time series X we can define:

x =
1

T

T∑
t=0

xt (2.16)

σk =
1

T

T∑
t=0

(xt − x)k (2.17)

ρk(l) =
1

T − l

T−l∑
t=0

(xt − x)(xt−l − x) (2.18)

Where the overbar indicates that the average is computed on time dimension

and not on ensemble realizations. A further step is ergodicity. Even if the operation

2.16, 2.19, and 2.18 are consistent, we cannot state that they are equivalent to

expectation, central moments, and autocovariance defined in 2.5, 2.7, and 2.9 on

the ensemble realizations. When it happens, the process is said to be ergodic. Such

as for stationarity, there are different grades of ergodicity. The most used in time

series analysis is ergodicity for the mean.

Formally, the process A is said to be ergodic for the mean if:

lim
T→+∞

x = µ (2.19)
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i. e., if the mean on time dimension converges to the ensemble mean.

It worth note that in many applications ergodicity and stationarity turn out to

amount in the same requests, but they are different concepts, as detailed before.

While ergodicity is a sufficient condition for stationarity, a stationary process could

not be ergodic. Furthermore, it must be clear that stationarity and ergodicity are

most of the time assumptions, being used when the ensemble realization is not

available.

We wonder now if stationarity and ergodicity are concepts compatible with the

presence of seasonality. There is no a general answer to this question, since it de-

pends on how seasonality influence the statistical behavior of each timestep. Strict

stationarity is too strong for allowing seasonality, but we already stated that is too

strong for any interesting application. WSS could be compatible with seasonality if,

for example, seasonal patterns only influences central moments of each timestep’s

statistical distribution. This requirements is too strict, and we must take into ac-

count that seasonality in climate system could affect the expectation values too,

contrasting the requirement in equation 2.12.

Thus, for the evaluation of seasonality in Earth’s climate system we cannot

rely on statistical methods. The most used alternative is to rely on some heuristic

assumptions, dividing the time series in components and trying to detect them with

ad-hoc defined methods. These considerations will be discussed in the following

subsections.

Even if stationarity and ergodicy did not lead to usable results, this dissertation

will be useful in the following of this chapter.

2.1.3 Sampling

The data considered since now are by definition discrete in time. Even if the process

that generates them is time-continuous, a discretization process must be applied to

access the data. This process is called sampling and is performed using a sam-

pling interval ∆t. So given a continuous signal x(t) the sampling process could be

formalized:

xt → xt = x(n∆t) (2.20)

Where n ∈ [1, T ] is the number of measurements. The sampling process de-

termines a loss of information and must be chosen carefully, according to the phe-



20 CHAPTER 2. SEASONS AND SEASONALITY

nomenon which is under investigation. The choice of a sampling interval implies the

definition of a sampling frequency ν, defined as:

ν =
1

∆t
(2.21)

Here it must be noticed that the definition of the unit of measure of t is not

trivial, since it implies the assumption of a reference time unit which is a system

scale factor.

In this work we will assume t ∈]0, 1[ such that ν ∈ I+ where I+ denotes the inte-

ger numbers larger than one. This means that ν describes the number of samplings

taken in a time unit. For simplicity we introduce now the parameters used in this

work: the reference time unit is 1 yr with a daily frequency sampling (∆t = 1/365),

thus ν=365. This means that we will ignore processes that are characterized by

frequency higher than 2 days.

2.1.4 Time series components

As stated in previous subsections, in absence of the ensemble realization of the pro-

cess, seasonality in time series could not be evaluated relying on statistical methods.

Thus, we can try to divide the time series in its components and focus on seasonality.

Time series could be heuristically considered as formed by three components:

trends (T ), cycles (C), and residuals (R). These components are usually modeled

combining them in additive or multiplicative ways. Here we consider the addictive

mode:

X = T + C +R (2.22)

A finest decomposition could be performed on cyclical components. Cycles could

include an oscillation with period inferior or equal to 1 yr (seasonality Se) and lower

frequencies components (Cy). It is not merely a matter of periodicity. Seasonal

cycles in climate system are usually more regular than other cyclical components.

In the same way, climatic time series usually shows variability at short time scales,

such as days or weeks, which could lead to rise of irregular periodicity too.

Determining threshold of regularity or periodicity for the division of periodical or

quasi-periodical cycles in seasonality or other components would requires additional

evaluations which exceed the purpose of this work.
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Here we are trying to find the point of contact between the definitions of season-

ality and seasons. Meteorological seasons, in their common use, have a periodicity

of about 1 yr. Thus we will consider the cycles with period of about 1 yr as seasonal

components (Se), and we will incorporate the other periodicity or quasi-periodicity

into residuals (R). This results in the following division of time series into its com-

ponents:

X = T + Se+R (2.23)

Time series analysis makes use of different techniques in order to identify these

components, based on the definition of continuous functions which can represent

them. Assuming that we could chose the best one, we would be able to find the

seasonal pattern in our climatic time series. This pattern would be described by

a time-contiguous signal. Thus, this does not answer our main question, which is

why we can use meteorological seasons for the description of the seasonal pattern

in climate time series. At the light of what we stated in this section, we will try to

answer this question in the next section.

2.2 Definition of seasons

Briefly summarizing the results of the previous section: a pure statistical approach

for the recognition of seasonality is not applicable. Firstly, because most of the

time, when dealing with climate time series, we only have one realization and not

an ensemble. Furthermore, the intensity of seasonal patterns in climate time series

prevents us from assuming stationarity, in order to use statistical approaches with

only one realization. Thus, we stated that the best approach is to model season-

ality assuming an heuristic division of time series in components. In this sense,

seasonality should be modeled using a time-continuous signal. This is not helpful

for the definition of seasons, meant as the periods in which we divide the years for

describing seasonality.

As we stated in chapter 1, meteorological seasons are a powerful tool since they

describe what is the expected behavior in a determined period of the year. Thus, we

will try to combine the heuristic division performed in , with the ensemble approach.

As we will detail, using eqaution 2.23 we can obtain an ensemble of realizations

starting from a single realization, which statistical behavior highlights the seasonal

features.
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2.2.1 Work approach

Let’s consider a time series which is a single output of a stochastic process. We do not

have an ensemble of realizations, and we can not assume stationarity. Nevertheless,

we can consider each year as a single output of the process. If the time series, being

daily the frequency sampling, consists of T years∗365 values, now we have a matrix

of T years realizations of the process A, each of one of length 365. This matrix is

formally consistent with D (equation 2.3), but substantially different if we consider

that the components defined in section 2.1.4 now vary through each realization.

In fact, each row now has a time-dependent statistic. That is to say, the first

realization (i.e., the first year) is not necessary ruled by the same distribution on the

nth realization (i.e., the nth year). Basing on the simplified time series components

division performed in equation 2.23 we can note that the trend could modify these

distributions. If we remove the trend, as we will see in chapter Methods, we can

consider our representation formally more reliable.

It is easiest to get this point considering an ideal climatic dataset. Climatic data

could be presented in spatio-temporal matrices. Consider a homogeneous space-time

distributed dataset, where each space coordinate indicates a grid point, and a defined

number of atmospheric variables. Assuming that there are M grid points and H

variables, the size of the matrix is:

(T years ∗ 365)X (M ∗H) (2.24)

If we consider each year as a different realization of the process, we obtain a

tensor with the following size:

(365)X (T year)X (M ∗H) (2.25)

We can represent the data in the matrix Df , remembering that each x ∈ RM∗H :

Df =


x1
1 . . . xT

1
...

. . .
...

x1
365 . . . xT

365

 (2.26)

It should be now clear that the current data representation (after having removed

eventual trends) allows us to focus only on seasonality and residuals components.
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With this representation, each rows contains the climatic behavior for each day on

different years, grid points and variables.

This representation is now compatible with our purpose of defining the seasons.

As we will detail in the next subsection, finding meteorological seasons is equivalent

to grouping the rows in Df basing on their distributions.

2.2.2 How to define the seasons

Now we can formalize our work hypothesis for the division in meteorological sea-

sons. At the light of what we said in the previous sections, we can assume that

seasonality in climate system components shows an emergent behavior which leads

to the identification of periods with similar characteristics, i. e. the seasons. We

will verify the goodness of this hypothesis at the end of this dissertation.

Formally, this could be seen as a mapping from a time continuous signal to a

discrete number of states. Consider the matrix Df defined in the previous section

(equation 2.26). Consider taking just a single realization (i.e., a single year) X i,

remembering that each xi
t has M ∗ H dimensions. Assume that the system has a

finite number Ns of different and physically significant states s:

St = {s, 1 ≤ s ≤ Ns} (2.27)

We can thus define a state sequence Si
t which contains the states sit of each xi

t,

mapped by a function δxi
t. Hence the mapping of matrix Df results in matrix Ds

which is a matrix of the states:

Df =


s11 . . . sT1
...

. . .
...

s1365 . . . sT365

 (2.28)

This mapping, at the light of what we said before, is performed on the base of

seasonal cycle and residual component of each row.

Now the recognition of seasons lies in the definition of the mapping function.

As we will see in the next chapter, the aim of the machine learning approach is

to implicitly recognize the mapping function which best catches this path without

human supervision, and in this way defines the meteorological seasons.
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Chapter 3

Data

There is currently a large number of climate datasets available within the climate

community, developed and distributed for a wide range of uses. They differ for

several characteristics, such as the space and time coverage and resolution, and the

variables which they provide. In this work we make use of two kinds of products,

namely one climate reanalysis and climate models providing historical and future

simulations. This chapter presents the used datasets – the ECMWF ERA5 reanal-

ysis [Hersbach et al., 2020] (section 3.1) and the Earth System Model EC-Earth3

[Döscher et al., 2022] (section 3.2), along with the physical variables considered in

this study, the total precipitation and surface air temperature.

3.1 Climate reanalysis: ERA5

3.1.1 ERA5

ERA5 is the fifth generation climate reanalysis developed and distributed by the Eu-

ropean Centre for Medium-Range Weather Forecasts (ECMWF). Climate reanalyses

are datasets that combine, through data assimilation techniques, historical obser-

vations with the output of numerical models to provide a detailed gridded picture

of the past and present state of the climate system on a global scale at the sur-

face and for all levels of the atmosphere. Reanalysis data have been widely applied

in atmospheric sciences, for example, to assess the impact of changes in observing

systems or to compute state-of-the-art climatologies [Hersbach et al., 2020]. In this

work, ERA5 is used as a ground-truth dataset, that is to say the dataset which

contains the truth and is therefore used to evaluate the performance of the built

methodology.
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3.1.2 Reanalyses vs observations

What makes a climate reanalysis system appreciated and reliable is the fact that it

is able to assimilate observations into one physical-dynamical model. Observations

would be the best possible source of information to understand the current and

recent past climate, however they are characterised by a number of drawbacks and

weak points, including:

• their spatial and temporal domain: observation datasets provide information

only at specific times and locations, corresponding to the station’s operative

periods and locations. In-situ stations are sparse and unevenly distributed

over the globe (e.g. valleys vs mountains; land areas vs sea). More regular

observation datasets, such as the ones obtained from satellite data, only cover

the more recent period (typically the last 40 years, from 1979 on).

• their consistency: observational data, being obtained by different sources, may

have some bias between each other and therefore they have to be verified and

homogenized before their use.

• their accessibility: there is a large number of observation datasets available,

but not all of them are easily accessible.

A climatic reanalysis can overcome these issues by processing the observation

data within a physical model, creating homogeneous space-time grids of standardized

and verified data. ERA5 incorporates data from a great number of observation

sources which are assimilated, processed with the physical model IFS Cy41r2, and

then stored into hourly fields. More information about the ERA5 model workflow

and settings could be found in the reference paper [Hersbach et al., 2020].

3.1.3 ERA5 data

In this work we will use the two following ERA5 variables: “total precipitation” and

“surface air temperature”. Even if ERA5 data are available from 1950, we selected

only the period from 1979 to 2020, as the data in this period are considered more

reliable as they assimilate also satellite observations, which are available starting

1979.

ERA5 has a spatial resolution of 0.25◦x0.25◦ (about 30 Km). Both variables are

used in their daily mean temporal aggregation.

ERA5 dataset is distributed through the Copernicus Climate Data Store (CDS)

portal [ECMWF, 2023].
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3.2 Climate simulations: EC-Earth3

3.2.1 EC-Earth3

EC-Earth3 is a Earth System Model (ESM). ESMs are a class of numerical models

which aim to describe the behavior of Earth’s climate system. ESMs are the upgrade

of Global Climate Models (GCMs). GCMs have been designed as a combination of

coupled models describing the atmosphere, sea ice, ocean, and land. ESMs also

include components for vegetation and carbon cycle in order to perform simulations

more representative of the behavior of the entire Earth’s climate system. Nowadays,

ECMs are our best tool to understand the Earth’s climate system and its possible

future evolution. In this work we will use the basic configuration of EC-Earth3,

which includes the components describing atmosphere, sea ice, ocean, and land.

EC-Earth3 is developed on the concept of “seamless prediction”. That is to

say that a seasonal weather forecast model, which simulates atmospheric dynamics

and thermodynamics over short time scales, is joined with a climate model, which

simulates the interactions between the atmosphere, ocean, land surface, and ice over

longer time scales.

The models used for each components are [Döscher et al., 2022]:

• IFSr4, developed by ECMWF for the atmosphere module, with a horizontal

resolution of about 80 km and 91 vertical levels. It includes the land model

HTESSEL.

• NEMO 3.6, developed by the Nucleus for European Modelling of the Ocean,

for Oceans, with an average horizontal resolution of 1° x 1° and 75 vertical

levels.

• LIM3 for sea ice model developed by Louvain la Neuve.

These modules are coupled through The OASIS3-MCT coupler version 3.0. For

more details on the setup of EC-Eart3 refer to [Döscher et al., 2022].

In this work we make use of the simulations of the EC-Earth3 model performed

for contribution to the Coupled Model Intercomparison Project Phase 6 (CMIP6).

CMIP6 collects the results of over 100 models from more than 50 modeling centers

around the world. In the next subsections we will give a brief overview of the design

of CMIP6 experiments.
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3.2.2 CMIP6

The Coupled Model Intercomparison Project (CMIP) is now one of the foundational

elements of climate sciences. CMIP started over 20 years ago as a comparison of the

first global coupled climate models (numerical physical models which simulate dif-

ferent components of the Earth system and their interaction) and now has reached

its 6th phase (CMIP6). CMIP gives the baseline for the model settings and collects

and distributes the outputs obtained by models developed by more than 50 mod-

eling centers around the world. Due to the increase of the scientific questions that

these models try to answer, along with the increase of information that these mod-

els could give, CMIP6 has reorganized its structure with respect to the precedent

phase (CMIP5). Now three major components could be identified, as detailed by

[Eyring et al., 2016]:

• the Diagnostic, Evaluation and Characterization of Klima (DECK) experi-

ments (klima is Greek for “climate”), and CMIP historical simulations. DECK

includes four baselines simulations: 1) an historical Atmospheric Model Inter-

comparison Project (amip) simulation, 2) a pre-industrial control simulation

(piControl), 3) a simulation forced by an abrupt quadrupling of CO2 (abrupt

4×CO2) and 4) a simulation forced by a 1 % yr−1 CO2 increase (1pctCO2).

The historical simulation is designed to cover the recent past period (1850-

2014) (section 3.2.2). These simulations are essential because they provide a

standardized baseline for model comparison.

• The creation of a common infrastructure with standardized documentation

which facilitates the distribution of the models results.

• The reorganization of the experiment runned for the project, called CMIP6-

Endorsed Model Intercomparison Projects (Endorsed MIPs), which led to the

creation of the guidelines for 23 specific research projects.

In this work we will make use of the historical simulation and of the Scenario

Model Intercomparison Project (Scenario MIP), which is the Endorsed MIP designed

to evaluate the response of climate models to different future emissions and socio

economics scenarios.

3.2.3 Historical and future scenarios simulations

The historical experiment is a simulation of the recent past (1850-2014), in which

changing conditions are imposed consistently with observations. The guidelines for

the execution of the experiments requires at least one ensemble member and the
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use of a Atmosphere-Ocean coupled general circulation model. For all the forcing

constraints, proper datasets are indicated by CMIP6. For a complete reference see

[Documentation, 2018]. The rationale behind historical experiment is to evaluate

the models performance against present climate and observed past climate changes.

The Scenario Model Intercomparison Project (Scenario MIP) [O’Neill et al., 2016]

is the primary activity in CMIP6 which provides climate projections based on al-

ternative scenarios of future emissions and land use changes and has been designed

with eight alternative 21st century scenarios. These scenarios describe the possi-

ble future developments of anthropogenic drivers of climate change. Until CMIP5

these scenarios consisted of Representative Concentration Pathways (RCPs), a set

of four pathways of land use and emission of air pollutants and greenhouse gasses. In

CMIP6, these pathways have been integrated with the Shared Socioeconomic Path-

ways (SSPs), which modelize socioeconomic development. The idea behind this

choice is to focus not only on the physical climate system, but also on the climate

impacts on societies. RCPs are named after the radiative forcing (the balance alter-

ation between incoming and outcoming energy in the Earth system) they produce in

2100, measured in W/m−2. CMIP6 incorporates seven RCPs: 1.9, 2.6, 3.4, 4.5, 6.0,

7.0 and 8.5. SSPs are organized into 5 levels: SSP1 and SSP5 envision optimistic

trends for human development but, while SSP1 assumes a shift toward sustainable

practices, in SSP5 there is an energy intensive, fossil based economy. SSPs 3 and

4 envision more pessimistic development trends, with increasing inequalities. SSP2

prospect is a central way in which trends continue their historical patterns. Figure

3.1 summarizes the SSP-RCP scenarios used in CMIP6.
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Figure 3.1: SSP-RCP scenario matrix illustrating ScenarioMIP simulations. Each cell in the
matrix indicates a combination of socioeconomic development pathway (i.e., an SSP) and climate
outcome based on a particular forcing pathway (i.e., an RCP). Dark blue cells indicate scenarios
that will serve as the basis for climate model projections in Tier 1 of ScenarioMIP; light blue
cells indicate scenarios in Tier 2. White cells indicate scenarios for which climate information
is intended to come from the SSP scenario to be simulated for that row. CMIP5 RCPs, which
were developed from previous socioeconomic scenarios rather than SSPs, are shown for comparison
(Source [O’Neill et al., 2016]).

3.2.4 Enseble members

The simulations detailed in the previous section are performed by each model partic-

ipating in CMIP6. The result is the so-called “multi-model ensemble”. The analysis

of the multi-model ensemble is primarily used to explore the spectrum of possible

evolution of Earth’s climate system under the conditions imposed in the specific

experiment.

Another approach carried in CMIP6 is the so-called “multi-member ensemble”.

Each model performs the simulations slightly varying the experiment setup to obtain

a spectrum of results for each experiment. Taking as example EC-Earth3 models,

the historical simulation is carried out several times changing the setup, obtaining

different historical simulations which are the multi-member ensemble of EC-Earth3

model for historical period. The same approach is used in the ScenarioMIP ex-

periments and in the other EndorsedMIPs. The rationale behind multi-member

ensembles is to use this spectrum for the evaluation of the model’s sensitivity to a

slight change in the setup.

In CMIP6, each member of the multi-member ensemble is identified with an

univocal code, called “VARIANT-ID”. VARIANT-ID are encoded in the form

r[ridx]i[iidx]p[pidx]f [fidx], where each index is an integer (≥ 1) and corresponds to
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[Taylor et al., 2018]:

• ridx: the realization index, used for distinguishing among members of an en-

semble of simulations that differ only in their initial conditions. Each future

scenario simulation should be assigned the same realization integer as the his-

torical run from which it was initiated.

• iidx: the initialization index, used either to distinguish between different algo-

rithms used to impose initial conditions on a forecast or to distinguish between

different observational datasets used to initialize a forecast.

• pidx: the physics index used for identifying the physics version used by the

model.

• fidx: the forcing index, used to distinguish runs with different variants of

forcing applied.

Normally, for the multi-model ensemble, only an ensemble member for each model

is used, usually the r1i1p1f1 member.

3.2.5 EC-Earth3 specifics

As for ERA5, we will use the “total precipitation” and “surface air temperature”

variables. We will make use of the Historical simulation (1850-2014) and of the

future projection under the SSP5-8.5 from ScenarioMIP (2015-2100). The histor-

ical simulation partially overlaps with ERA5 (1979-220) and will be used for the

comparison between the two datasets, such as for the evaluation in the past of the

methodology we developed.

In this work, dealing with only one model (EC-Earth3), we will use a multi-

member ensemble. We selected the VARIANT-ID with both total precipitation and

surface air temperature available for both historical simulation and future projec-

tion under SSP5-8.5 scenario. These requirements lead to the identification of three

ensemble members (r1i1p1f1, r13i1p1f1, r15i1p1f1). EC-Earth3 has a spatial reso-

lution of 0.70°x0.70° (about 80 Km). Both variables are used in their daily mean

temporal aggregation.

EC-Earth3 dataset, such as the whole CMIP6, is available on the portal of the

Earth System Grid Federation (ESGF) [ESGF, 2023].
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Chapter 4

Methods

This chapter aims to introduce the development of a method to objectively identify

seasons in climate data, aiming at being flexible and highly adaptable to different

case studies. Thus, the choice of a data driven approach appears to be the most

obvious consequence. In the last 30 years data driven methods, commonly defined

as ”machine learning”, have been the subject of great interest from the scientific

community. The continuously increasing amount of available data has given rise to

the need of methods which can extract and condense relevant information with as

little human interaction as possible. In this direction machine learning has given

multiple proofs of being able to achieve this task. Climate sciences have faced a

similar issue, given the enormous increase of data availability in the last decades,

and machine learning is yielding promising results in this field too.

This chapter presents the methodology developed in this work, which has been

built in the light of being adaptable to the most diverse cases. Section 4.1 contains

an overview on machine learning methods and their history, with a special focus to

those concerning climate sciences. In sections 4.3 and 4.4 are respectively presented

the method adopted for the seasons definition, and the one for the seasons projection.

4.1 Machine learning

Note to the reader: an exhaustive review of machine learning history and methods

goes beyond the goal of the current thesis. The purpose of this section is to point out

the main ideas and evolution of the methods which inspires this work.
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4.1.1 History

The term Machine Learning (ML) refers to a wide class of algorithms and statistical

models which aim to perform specific tasks without being explicitly programmed for

them. The origin of ML can be placed between the end of the 50s and the beginning

of the 60s of the XX century, when Rosenblatt performed the first mathematical

studies about the perceptron [Rosenblatt, 1959], with the task of making a machine

recognize some hand-written numbers. The perceptron is a binary classifier which

maps input values in output classes with:

f(x) = χ(< w, x > +b) (4.1)

Where x is the input data, w the so-called weights, b the bias and <,> denotes

the internal product. In Rosenblatt formulation was a threshold function which

gave 1 if < w, x > is bigger than b and 0 otherwise. Both the parameters w and b

are optimized in the training process, where they are randomly initialized and then

corrected on the prediction they give on the data. In this sense, a real breakpoint in

ML history was the proof given by Novikoff of the learning algorithm convergence

[Novikoff, 1962]. In 1962 Widrow created MADELINE, a perceptron with an addi-

tional layer between the input and the output called hidden layer, giving birth to

the first multilayer neural network [Widrow and Stearns, 1990].

Formally, the training process of a perceptron could be seen as the identifi-

cation of a hyperplane in the phase space which properly divides the features of

the data based on their belonging class. This problem was firstly approached

deterministically, since Tsypkin in 1968 showed the power of stochastic methods

[Tsypkin, 1968].Taking as reference the formula 4.1 for the perceptron, he intro-

duced a performance index J(w, x) as the expectation value Ex of a generical cost

function Q(w, x), called loss function,which quantifies how the current weights w

allows a correct identification of the real belonging class of the data x:

J(x) = ExQ(w, x) (4.2)

Thus, the goal of the learning process is to minimize J(w, x), and Tsypkin

himself proposed a learning algorithm known as Stochastic Gradient Descent (SGD):

w[n] = w[n− 1]− γ[n]∇Q(x[n], w[n− 1]) (4.3)
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Where γ[n] represents the rate at which the weights w are updated.

In this period also the first clustering algorithms were developed, such as K-

means clustering [Lloyd, 1957] and Hierarchical clustering [Ward Jr and Hooker, 1963],

with the purpose of grouping data in clusters based on their characteristics. In

1969 a book by Minsky and Papert showed some limitations of the perceptron

[Minsky and Papert, 1969], driving the beginning of the so-called 1st ML Winter

in which development of ML was quite limited. A new breakthrough in ML ad-

vances was the introduction of the back-propagation algorithm, which updates the

weight of each layer starting from the last one with a chain rule, instead of updating

all of them at the same time [Rumelhart et al., 1986]. Despite a new period without

remarkable achievement (commonly referred as the ML 2nd winter), since the 1990s

ML has experienced a new boom. Three pushing factors could be recognized to

explain this new phase:

1. The continuously increasing amount of data, which makes the extrapolation

of information from them more a necessity than a scientific curiosity.

2. The decrease in parallel computing and memory cost.

3. The development of new machine learning algorithms.

4.1.2 Most used machine learning techniques

ML is a wide and multidisciplinary sector, and relies on a great variety of algorithms,

which are applied depending on the specific task. A survey in these methods could

recognize three main categories: supervised learning, unsupervised learning, and

reinforcement learning [Mahesh, 2018].

• Supervised learning: the purpose of supervised learning is to instruct a

computer system to predict output values of a system based on a set of input

values. This prediction could be either of the class to which the data belongs

(classification), or one or more continuous variables (regression). Thus, a

supervised algorithm needs to be trained on a labeled dataset, i.e., a dataset

where each input data is associated to its belonging class or output value, and

can only be used on other data once trained on this initial labeled dataset.

• Unsupervised learning: unsupervised learning aims to extrapolate rela-

tionships from complex data without relying on labeled data. This can be

achieved by grouping data according to their characteristics (clustering), or

by determining the data distribution (density estimation), or even reducing

the dimensionality of data (Principal Components Analysis).
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• Reinforcement learning: reinforcement learning is the ML technique which

better reproduces the human learning process. Here the algorithm learns the

best behavior by a sequence of states and actions with a system of reward

based on the choices taken. Reinforcement learning is widely used in games

and other fields that involve human interaction.

A cross-sectional area to these categories is the Neural Networks (NNs) field. NNs,

also called Artificial Neural Networks (ANNs), are computer systems which try to

emulate the simplified model of a biological neural network. The constituent unit

of a NN are the artificial neurons, which are interconnected nodes organized in

layers. The shape of these layers and the type of connections (i.e., the architecture

of the NN) could vary considerably depending on the purpose for which it is being

implemented, and a comprehensive review of all their applications is beyond the

scope of the current thesis. Nevertheless, a common base structure in NNs is formed

from three layers: an input layer, a hidden layer, and an output layer. Due to the

presence of multiple layers of representation, neural networks are an example of the

so-called Deep Learning. NNs have been proved to be well performing in a wide class

of applications, especially when dealing with nonlinear problems. Furthermore, by

manipulating their architecture, they could be used for different purposes such as

classification, regression, dimensionality reduction and reinforcement learning.

4.1.3 Machine learning in climate sciences

As many other sectors, climate sciences have experienced an extraordinary increase

in data availability (Figure 4.1). Consequently, it can be considered as being an

example of the so-called big data, defined by their ‘four Vs’: volume, velocity, vari-

ety, and veracity (Figure 4.2). These features make the data hard to manage. On

the other hand, it is now clear that addressing climate changes involves adaptations

(preparing for the inevitable consequences), and this data is the core of the strategies

that can be implemented. This is forcing the scientific community to face the prob-

lem of climate data diffusion and interpretation, in the light that the information

that these data contain must be transposed in an easily accessible form for policy

makers [Overpeck et al., 2011].

For these reasons, machine learning algorithms are being used with increasing

frequency in the field of climate data and sometimes they can provide better results

than ”more” classical statistics models. Nevertheless, a massive implementation of

ML on Earth system data is still lacking, and the data analyst community is trying

to give itself guidelines to fill this gap. Some of the fields in which ML is giving

better results are [Reichstein et al., 2019]:
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Figure 4.1: Estimation of the volume of climate data: (source of image
[Overpeck et al., 2011])

Figure 4.2: The 4 Vs of earth system data (left) and the main features that should came
from their analysis (right) (source of image [Reichstein et al., 2019])
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• Global modeling: ML is finding its application supporting numerical simu-

lations as those provided by Global Circulation Models: a new sector of ML is

emerging aiming at developing algorithms able to learn the behavior of dynam-

ical systems, such as the earth system, making use of different techniques. The

most used methods are Physics-Informed Neural Networks (PINNs) and Neu-

ral Ordinary Differential Equations (Neural ODEs). PINNs are NNs designed

to include the governing equations and constraints that describe the system

being modeled, making the network able to learn the underlying physics of

the system and make predictions that are consistent with the laws of physics

[Cai et al., 2021]. PINNs are particularly useful to speed up and optimize

GCMs execution. Neural ODEs are a type of neural network architecture that

allows for the modeling of dynamic systems as a continuous-time differential

equation. In a Neural ODE, the input is a set of initial conditions for the sys-

tem, and the output is the state of the system at a future time. The network

learns a set of continuous-time differential equations that describe the evolu-

tion of the system. This means that Neural ODEs can be used to extrapolate

the behavior of a system beyond the range of available data [Chen et al., 2018].

This is particularly useful for fields that have a large availability of data and

a lack of reliable physical relationship (for example ice sheets dynamics).

• Downscaling: for the analysis of future scenarios, most of the time it is neces-

sary to transpose the output global fields obtained with GCMs into projection

over specified locations. This operation, called downscaling, is performed with

a great variety of dynamical and statistical models. Dynamical downscaling

is performed using Regional Climate Models (RCMs) which make use of the

outputs of GCMs as boundary conditions. ML could improve the performance

of these models with the methods explained above. Statistical downscaling is

performed establishing the relationship between GCMs outputs and variable

behavior at local scale. Here, ML has proved to give reliable results with the

application of recurrent and convolutional neural networks, that is to say neu-

ral networks which can take into account the space and time features of the

dataset [Reichstein et al., 2019].

• Clustering: notable results have also been reached with the application of

clustering algorithms to climate data, with a wide range of goals. Clustering

can be used to group together similar regions or time periods based on climate

variables, such as temperature or precipitation. This can help identify regions

that are particularly vulnerable to climate change, or identify trends and pat-

terns that may be related to global climate phenomena. Clustering, being an
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unsupervised method, allows to overcome some classicals methods which rely

on heuristic decision rules. Many studies have attempted to perform climate

classification from either a global and regional point of view, querying the num-

ber and the nature of the variables that should be included in such analysis.

Also, clustering techniques have been applied to improve the computation of

some climate indexes, with a better recognition of the spatio-temporal domain

in which they are defined [Steinbach et al., 2006].

4.2 Data preprocessing

Before proceeding with the discussion of the methods used in this work for the

division into meteorological seasons, we describe the preprocessing of the data, i.e,

the operations which make the datasets suitable for our analysis.

Climate datasets, such as ERA5 and Ec-Earth3, could be visualized as five-

dimensional tensors. The first dimension represents the physical variables (in our

case, surface air temperature and total precipitation), the second, third and fourth

dimensions represent the spatial coordinates (respectively, longitude, latitude and

vertical level), while the fifth dimension represents the time coordinate. The vari-

ables used in this work, surface air temperature and total precipitation, are dis-

tributed on single levels. This means that they do not need the vertical level coor-

dinate, since they are evaluated only near the ground (surface air temperature) or

on the ground (total precipitation). Thus, the datasets used in this work could be

visualized in four-dimensional tensors where each dimensions represents respectively

the physical variables, the longitude coordinates, the latitude coordinates, and the

time coordinates.

4.2.1 Data remapping

For the application of the methods we will describe, it is necessary that the data

tensors we will use (one for ERA5 and one for EC-Earth3) share the same shape.

As detailed in chapter Data, for both datasets we will use surface air temperature

and total precipitation in their daily mean time aggregation. Thus, the first and the

fourth dimensions are consistent. On the other hand, the space coordinates are not

consistent since ERA5 has an horizontal resolution of 0.25◦X 0.25◦ and EC-Earth3

has an horizontal resolution of 0.70◦X 0.70◦. Thus, we must remap the two tensors

in the same horizontal grid.

In this work we decided to remap the ERA5 dataset in the EC-Earth3 grid. That

is to say, we standardized both datasets on the coarsest spatial grid. Remapping on



40 CHAPTER 4. METHODS

the finest grid (tecnically called downscaling) is a legit operation as well, but would

require more caution and the application of specifics methods, since it implies gen-

erating information at a resolution which is not the one of the original datasets. We

remapped ERA5 on EC-Eart3 grid using the conservative interpolation. Formally,

any value obtained with interpolation could be written in the form:

f =
∑
σ

fσwσ (4.4)

Where f is the value in the interpolated field, σ tags the elements f in the

original field that contribute to interpolation, and w are the interpolation weights.

In conservative interpolation, σ tags the original grid cell which overlap with the

resulting grid cell, and w is the ratio of the area shared by the original and the

resulting grid cells (ref)(Fig 4.3).

Figure 4.3: Calculation of conservative interpolation weights w for a original grid cell
(dashed lines). Violet lines represent the area covered by the resulting grid cell. The weight
associated with the resulting cell is the ratio of the shaded area over the original cell area. (Source
of image: [Pletzer and Hayek, 2018])

Conservative interpolation is particularly indicated for the total precipitation

field, since it allows to conserve the spatial total amount of precipitation. That is

to say, if we select an area in the original field and the same area in the interpolated

field, the total amount of precipitation is the same.
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4.2.2 Moving averages

The second operation performed in the preprocessing phase relies on some heuristic

considerations. Climate time series are subjected to variability at high frequen-

cies, caused by the complex mutual interactions between the components of Earth’s

climate system. Relying on the simplified recognition we made of time series com-

ponent in chapter Seasons and Seasonality, we can include this variability in the

residual part. Since our purpose is to recognize the seasonal patterns, we assumed

that this variability could lead to results that are more difficult to interpret. As we

will see in section 4.4, a part of our methodology will be focused on recognizing the

the season to which each day belongs. Thus we can suppose that a high variability

between days could comport high variability in the results.

We tried to reduce this variability applying a moving average µmov to the original

data. The moving average is a commonly used operator for the empirical reduction

of high frequencies variability in time series analysis. Given a time series X =

{x1, . . . , xN }, the moving average is computed for each value xn as:

µmov[xn] =
1

k

n+(k/2)∑
i=n−(k/2)

ni (4.5)

Where k is the amplitude of the so-called window of the moving average.

Firstly, we applied the moving average on time dimension for each variable and

grid point, with a window of 30 days. Then, in order to strength more the seasonal

signal, we applyied the moving average through year for each ordinal day of the

year, with a window of 30 yr. That is to say, considering for example the January

1st of each year, we computed the moving average through January 1sts.

In this way, each day in our datasets now contains information of the previous

and following 15 days and yr. Furthermore, both intra-annual variability and inter-

annual variability have been empirically reduced.

Since we computed moving average only on complete windows, this operation

removes the firsts and lasts 15 days and yr in the datasets. It’s worth noting that

this operation is not necessary and has been performed only to obtain more clear

ad interpretable results.
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4.3 Clustering: a Radially Constrained method

The main goal we want to achieve is to build a method for the definition of mete-

orological seasons. In light of the previous section, unsupervised learning has been

identified as the most suitable choice since it allows us to extract information from

the data without any a-priori assumption. More specifically, grouping climate data

into seasons seems to be a task suitable for clustering. Due to their extensive use

in many different applications, a wide number of clustering algorithms have been

developed. Nevertheless, all of them share the same purpose, which is to group the

input in order to [Xu and Wunsch, 2015]:

• Maximize similarity between items in the same cluster.

• Maximize the differences between items in different clusters.

• Perform the previous operations based on a metric which is descriptive of the

dataset and fits for the purpose of clustering.

The standard procedure in the development of a clustering method consists of

[Xu and Wunsch, 2015]:

• Extract the most relevant feature from the dataset according to the purpose

of the work.

• Design the algorithm in order to catch these features in a proper way.

• Evaluate the performance of the algorithm.

• Explain the obtained results.

In the rest of this section, we will follow this workflow.

4.3.1 Features extraction

The theoretical basis of the seasonal feature extraction from the dataset is detailed

in chapter two, and below is reported the operative process. The input data consists

of a four-dimensional matrix from a gridded dataset (with shape longitude pts X

latitude pts X time steps X variables) where time steps=365*years being daily the

sampling frequency. Data are reshaped in a two-dimensional matrix (365 X (years

* latitude pts * longitude pts * variables)), to obtain a representation of data where

each day is an item (i.e. the object that will be assigned to a cluster) and has as

features the values each variable had in this day for each year and each grid point.
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Figure 4.4: Schematic of data reshaping: n= longitude points, m = latitude points, t = time
steps, y = years, v = variables)

In order that different dimensionalities and variance do not affect our detection,

the features used for the clustering must be scaled in order to be comparable. Even-

tual inter-year trends and differences in space and physical variables absolute value

may force the algorithm to perform the cluster based on information that is not rel-

evant to the seasonal cycle. Therefore, the features are scaled with standardization,

(or z-score normalization), so for each column Xj in the matrix obtained in Figure

(4.4):

Xj =
Xj − µ[Xj]

σ[Xj]
(4.6)

Where µ is the mean and σ the standard deviation. The data representation

obtained is used for the clustering.

4.3.2 Algorithm design

In this work we used an algorithm inspired by the paper Defining climatological

seasons using radially constrained clustering [Cannon, 2005]. Cannon proposed an

algorithm which could be placed in the class of the clustering algorithm based on

partition. Such methods aim to perform a classification of the data into a set of



44 CHAPTER 4. METHODS

disjoint clusters, based on a specific metric, in order to reach the purpose introduced

at the beginning of this chapter [Xu and Wunsch, 2015]. In this way, the result of

the clustering provides both the grouped data and a statistic performed on the

partitions obtained on the features space. A widely known algorithm from this class

is the k-mean which defines the partitions based on the means of the values of the

item contained in them (the so-called cluster centroids). The main workflow for this

class of clustering algorithm could be synthetized as done by [Xu and Wunsch, 2015]:

• Generate random centroids,

• Compute the metric,

• Update centroids with a defined method,

• Repeat the previous step until the metric converges.

The more evident problem in the application of these kinds of algorithms to our

case is the management of time dimension. The definition of meteorological seasons

implies that the resulting clusters are time-contiguous, but our dataset does not

contain any explicit information about the time location (i.e. the day of the year)

of each item. A possible solution could be achieved by introducing one or more

fictitious features (for example, adding a dimension which expresses the day of the

year), but we discarded this option to avoid improper conditioning of the problem

that would artificially drive the cluster solution. The second problem, still related

to time dimension, is that the periodicity of the dataset, i.e. that contiguity must be

respected on the boundaries of the dataset, so that the last element (corresponding

to December the 31st) is contiguous to the first one (January the 1st). In other

words, the cyclicity of the seasons must be respected.

Radially constrained clustering algorithm allows to overcome these problems,

forcing the clusters to be time contiguous and assuming the correct periodicity.

Practically, this is achieved by defining - instead of the centroids as done by k-

means - the time breakpoints which divide the clusters.

To provide a more concrete example, please consider the dataset obtained in

Figure 4.4 made by 365 samples of D dimension xd
t where t = 1, . . . , N represent the

time and d = 1, . . . , D the dimension, where D = n∗m∗y∗v. Data must be ordered

over time, which means that xi and xi+1 are time contiguous. Furthermore, data

must be periodical, so contiguity must be respected also for x365 and x1. It must be

noticed that this continuity is not strictly respected, since for each column the first

and the last element are not contiguous. Nevertheless, for each variable and grid

point, each column is contiguous to the following one. We can thus suppose that

contiguity is broadly respected if the number of years is large enough to absorb the
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information at boundaries. We set a limit of 30 years, which is the commonly used

time window for climate analysis. The aim is to determine M clusters by defining

M temporal breakpoints bk with k = 1, . . . ,M . The goal of the algorithm is to

minimize the Within Sum of Squares (WSS):

WSS =
∑
M

∑
N

∑
D

(xd
i − µd

i )
2 (4.7)

This metric, which is an euclidean distance. has been chosen as it is the same

proposed by Cannon. Furthermore, euclidean distance is the most used metric in

clustering algorithms. A future development of this work could consider a systematic

comparison between different metrics. The algorithm proposed by Cannon does not

have an implementation, so part of this work consisted of the practical realization

of it. The core of the algorithm consists of the following steps:

1. Starting breakpoints are randomly generated and are bound to be equally time

spaced.

2. WSS is computed.

3. Breakpoints are updated, each of them adding a random integer number uk ∈
U(−L,+L).

4. WSS is computed again, if smaller than WSS of previous step, new breakpoints

are accepted, otherwise breakpoints are downgraded to the previous version.

5. Steps 3 and 4 are repeated until WSS converges to its minimum.

To improve the algorithm, the following optional are added:

1. A scheduler for update rate, which scales down L if the metrics are getting

smaller at a very slow pace.

2. A constraint on season length: if an iteration violates it, the previous break-

points are restored.

3. An ensemble method, which performs the clustering several times with differ-

ent starting breakpoints and then keeps the best results according to WSS.

As for K-Means, this algorithm has a weak point in the definition of M , the

number of clusters, which in our case correspond to the number of seasons. There

is not a general and objective way to define this hyperparameter, but some criteria

which can be used to evaluate the goodness of a certain choice. The following

subsection contains the criteria chosen in this work.
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4.3.3 Evaluation metrics

The evaluation metrics in this work have a triple goal:

1. Evaluate the reliability of the clustering algorithm,

2. Evaluate the best number of clusters to be used to divide the dataset (i.e. the

best number of season)

3. Give an answer on the work hypothesis we made in chapter 2, i.e. if the

clustering approach is suitable for the seasonal division.

The elbow method is a qualitative way to evaluate the optimal number of clusters

in a dataset, based on a plot called ”elbow graph”. The clustering is performed

with a various number of clusters, and then for each run the WSS at convergence

is plotted. Ideally, the WSS decreases when the number of clusters increases, and

the rate of this decrease is called ”gain”. The ideal number of clusters is chosen as

the one after which the gain decreases and is recognizable in the plot due to the

characteristic elbow shape [Yuan and Yang, 2019]. This method, albeit qualitative,

is commonly used for the evaluation of the most proper number of clusters. On the

other hand, the silhouette score is defined to compare the similarity between data in

the same clusters with differences between data in different clusters. The silhoutte

coefficient is defined, for each element xi as:

si =
bi − ai

max{bi, ai}
(4.8)

Where ai is the average distance between xi and the other element in the same

cluster, and bi the average distance between xi and the elements in the other clusters.

This coefficient is in the range [-1,1] and approaches 1 when there is a close rela-

tionship between the object and the assigned cluster [Yuan and Yang, 2019]. The

silhouette score is obtained averaging that coefficient over all the data, and tested

along a various number of clusters. Thus, the optimal number of clusters is the one

which maximizes the silhouette score. This method is also used for the evaluation

of the algorithm: low values indicate a general bad performance .

4.3.4 Results interpretations

The radially constrained clustering algorithm gives M temporal contiguous clusters,

where M is the optimal number defined on the criteria exposed in subsection 4.3.3.
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Being the dataset daily, this means that each day is assigned to a cluster. These

clusters are the data-driven defined meteorological seasons. The following step is to

study the evolution of the seasons in future climate projection, which corresponds

to tracking the evolution of these clusters in new data.

4.4 Seasons projection: the SoftMax perceptron

The clusters obtained are defined by the temporal breakpoints, so a reasonable

approach to investigate the evolution of seasons to future projections in climate

model data could in principle be achieved by applying these breakpoints to the

new data, and then study the evolution of the physical values in the new clusters.

However, this approach has been discarded, since our purpose is to study how the

current definition of seasons will evolve, and this could imply a variation in their

onset and withdrawal, which cannot be captured with this method.

Another way analysis of the seasons in future climate could be obtained by

computing the clustering on the new data, losing memory about the ones computed

on historical data. This would allow us to obtain a dynamical definition of the

breakpoints, but again new clusters may not be correlated to the previous ones,

preventing us from exploring the evolution of the present seasons.

Considering the above points, we decided to rely on supervised learning: the

obtained clusters could be used as a labeled dataset for the training, in order to

make the system learn the features of the present-day seasons. Once the algorithm

is trained, it should be able to assign each day of the climate projection to one of

them. This method does not ensure that the resulting seasons are time contiguous.

So, their eventual contiguity will be used as a criterion for the validation of the

model.

The most used supervised-learning methods are the neural networks (NNs). NNs

have turned out to be able to find complex structures in high-dimensional data due

to their multilayered structure, and in this way establish relationships between the

input data and the belonging class [LeCun et al., 2015].

Since NNs have a complex architecture which could influence the results, and

therefore the architecture and the hyperparameters must be chosen and calibrated

accurately, we firstly tried with a perceptron. In the case study and results chapters,

we will show that the perceptron showed to be reliable , and then we assumed there

is no need for a NN.
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4.4.1 Perceptron architecture

As exposed in section 4.1.1 the perceptron is the progenitor of the NNs and is formed

by only two layers: the input layer and the output layer (Figure 4.5). Technically, a

perceptron is a binary classifier, while in this work we will face configuration where

more than two seasons need to be classified. Nevertheless, the architecture of the

perceptron could be generalized such that instead of estimating the probability of

an event, we can estimate a vector with the probabilities of each of the multiple

possible outcomes.

Figure 4.5: Schematic representation of a softmax perceptron: the lines between input
and classifier units are the weights w.

Considering Figure 4.5, the input layer has N neurons, where N is the number

of the features of the data, and the classifier (henceforth also called output layer)

has K units, where K is the number of seasons. The perceptron computes for each

unit in the output layer (i.e., for each season) the probability that the input data

is associated to that unit (i.e. is associated to that season). This computation is

performed with the SoftMax function [Bishop, 2006]. Being p(yn = k|Xn, wk) the

probability that the nth data is associated to the season k, we compute the SoftMax

as:

p(Xn, wk) =
1∑N

i=1 e
wi,0+. . .+wi,N

∗ ewk,0+. . .+wk,N (4.9)

Consequently, the sum of the probabilities for each class must be equal to 1.

The training process aims to optimize the weights wi such as the class that gets the
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best score is the one that the data belongs to. This is achieved by minimizing a

loss function L(X,w). In this work we use the Categorical Cross-Entropy (CCE)

[Lugosi and Cesa-Bianchi, 2005]. CCE is a loss function suitable for cases in which

the output of the model is a probability distribution over multiple classes, as it is

in our work, and is one of the most used in multi-class classification. The CCE loss

function is defined as:

L(X,w) = −
K∑
k=1

ynlog[p(Xn, wk)] (4.10)

Where yn is the true class of the data. There is no analytic method for the

minimization of this function, so a stochastic approach is used. The optimization of

the weights is part of the training process, explained in the next subsections.

4.4.2 Dataset preparation

In our case, the dataset used for the building of the model is the one derived by

the clustering. These data are currently represented by the two-dimensional ma-

trix in Figure 4.4, with shape (365X (#years ∗ #latitude pts ∗ #longitude pts ∗
#variables)). Each day is labeled with its season, so the labels are organized in

a vector of 365 elements. A dataset of 365 elements is too small, and risks pro-

viding too few examples. So, data are reshaped in a two dimensional matrix with

shape (365 ∗ #years)X (#latitude pts ∗ #longitude pts ∗ #variables). Thus, the

labels vector is expanded by repeating itself for years times. The real values of the

shape depend on the size of the region (for the #lat pts and #lon pts), the included

variables and the number of years in the dataset used for the seasonal clustering.

These values are specified in the case study, while here are kept undefined in order

to maintain generality. Once the dataset is created, it is divided into the three sets:

1. Training set (64% of total data): is used for the optimization of the weights w

in the training, as will be detailed in the next subsection.

2. Validation set (16% of total data): is used for controlling the learning process.

During training, the model is repeatedly evaluated on the validation set to

assess its performance. It is important to note that the validation set must

not be used for weights optimization.
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3. Test set (20% of total data): is used to test the performance of the model in

new, unseen data (section 4.4.4). For this reason, it is important that these

data are not used either in training and validation processes.

This division is performed randomly, imposing that the proportion of days be-

longing to each season is respected in each of the aforementioned sets.

4.4.3 Learning process

The learning process aims to optimize the weights between the input and output

layers such that the model could recognize the data and assign them to the correct

class. The learning process consists of a pre-defined number of iterations (epochs),

in which the model processes all the data in the training set. The training set is

divided in batches of 128 items, then in each epoch the model processes sequentially

the data in each batch. For each batch the weights are optimized in order to lower

the loss. In this works we use stochastic gradient descent (SGD) optimizer, which

updates the weight at each iteration n of the learning process with:

w[n] = w[n− 1]− γ[n]∇Q(x[n], w[n− 1]) (4.11)

where is the learning rate. It is worth noting that SGD is a simple stochastic

algorithm, while more sophisticated optimizers are available in literature. Never-

theless, as it will be exposed in the case study section, it provides good results and

then we assume there is no need to change it. At the end of each epoch, the loss

is computed over the validation set in order to check the performance of the model

over data which are not used for the training. Moreover, at each epoch the accuracy

is computed on both training and validation sets, defined as the number of correct

assignments of the model over the total size of the set. Plotting accuracy and loss

versus the epochs results in the so-called learning curves. Visually, the learning

curves could help in controlling the learning process: if their spread increases (i.e.,

training loss decreases more rapidly than validation loss), the model is occurring in

overfitting, i.e., it is losing its ability to generalize and extract correct information

from new data.

4.4.4 Test phase

Once the model is trained, it must be tested in order to evaluate its performance.

The test set is used, which - by definition - has never been seen by the model in the
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training phase. The following metrics are used in this phase:

1. Accuracy

2. Precision: for each class k, pk = # data correctly assigned to k
# total data assigned to k

. Precision gives an

estimation of what is the proportion of the data assigned to class k that is

effectively correct.

3. Recall: for each class k, rk =
# data correctly assigned to k
#total data belonging to k

. Recall gives an estimation

of the proportion of element belonging to class k that are found by the model.

After the testing phase, the model is ready to be used for the classification of

new data.
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Chapter 5

Hindu-Kush Karakoram/Himalaya

seasonal cycle

The study area analyzed in this work is the Hindu-Kush Karakoram/Himalaya

region (HKKH). This region could itself be divided into two distinct subregions,

namely the Hindu-Kush Karakoram (hereinafter, HKK) and the Himalaya (Him)

[Palazzi et al., 2013] (see figure 5.1). The interesting feature of this area is that the

two subregions, even being space-contiguous, show considerably different seasonal

precipitation patterns. As better detailed in the following paragraphs, the HKK re-

gion is characterized by a bimodal precipitation seasonal pattern, with a winter peak

driven by Western Disturbances (WDs, see section 5.2) and a summer peak related

to the Indian Summer Monsoon (section 5.1). The Him region, on the contrary,

is only characterized by a summer peak, since the WDs contribution is confined

further to the North-West. These differences in terms of seasonal cycles, widely

documented in the literature, make the region a good case study for the validation

of the proposed methodology for season identification.

In this chapter we will present a brief climatic characterization of the HKKH

region, without the goal of being exhaustive. We will focus on the phenomenology

of the precipitation seasonal features, rather than their physical drivers, trying to

detect and validate the existing criteria found in literature for the time-space sep-

aration of the seasonal patterns. Attention is also paid to interannual variability,

the possible role of atmospheric teleconnections, past and expected trends, in order

to widen the number of criteria for the validation of the proposed methodology.

Sections 5.1 and 5.2 deal with the Indian Summer Monsoon and the Western distur-

bances, respectively, while section 5.3 contains a focus on the HKK and Him regions.

Section 5.4 contains the results of the proposed methodology for the region. Finally,

in section 5.5 the results are briefly commented and discussed.

53
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Figure 5.1: Spatial domain of the HKKH region: the red box represents the HKK box [Longi-
tude 71–78 ◦E, Latitude 32–37 ◦N], the blue box represents the Him region [Longitude 78–93 ◦E,
Latitude 25–32 ◦N]. Color shading shows the elevation data obtained from ERA5 orography.

5.1 Indian Summer Monsoon

5.1.1 Main features

The term “monsoon” is traditionally associated with the rainy period which ac-

companies a change in the seasonal prevailing wind in much of the tropics. In the

regions prone to the monsoon, this circulation dominates the seasonal precipitation

patterns, as the origin itself of the world, also suggests, which probably derives

from the Arabic word mausim or the Malayan monsin which both mean season

[Zhisheng et al., 2015]. For centuries it has been seen as a regional phenomenon

similar to a giant land-sea breeze circulation [Gadgil, 2003, Zhisheng et al., 2015].

The more sophisticated concept of Global Monsoon (GM) emerged in the second

half of the XX century, as global observational datasets became available. The GM

could be interpreted as the first Empirical Orthogonal Function (EOF) of the an-

nual anomaly of precipitation and circulation in the global tropics and subtropics,

physically driven by the seasonal migration of the Intertropical Convergence Zone

(ITCZ). Areas prone to GM are identified by the IPCC as those in which the annual

precipitation range (i.e. the difference between the annual maximum and minimum

precipitation) exceeds 2.5mm
day

, with no further requirements. However, this could

lead to the inclusion of areas where the source of precipitation is not monsoonal.

Therefore, a subsequent analysis was performed by the IPCC based on the published
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literature [IPCC, 2021a] (figure 5.2).

Figure 5.2: Global and regional monsoon domains: area interested by global monsoon
(black line) and regional monsoon domains (colored areas). Regions that satisfy the GM criterium
but are found to be dominated by a non-monsoonal dynamics are indicated with dots (source:
IPCC, 2021: Annex V: Monsoons).

The South-Asian Monsoon (SAM) – the part of the monsoon system which

mostly influences the HKKH region – can be regarded as part of the Asian Sum-

mer Monsoon (ASM). Since it covers wide geographical areas encompassing several

countries, it has a unique impact on the economy of the region. In the Indian sub-

continent, more than 60% of agriculture is rain fed and more than 70% of total

rainfall occurs in the Monsoon season [Amrith, 2018]. Furthermore, the ASM pro-

vides precipitation to the southern slopes of Central and Eastern Himalayas. The

spatial distribution of precipitation follows the orography of the region, with maxima

located along the west coast of the Indian subcontinent (along the mountains called

Western Ghats) and over the South-Eastern Himalayas [Gadgil, 2003]. The inter-

annual variability of total precipitation shows consistent year-to-year fluctuations,

while decadal variability presents alternate ∼ 30 years-long periods of precipitation

above and below the average [Kripalani et al., 2003]. Until the end of the XX cen-

tury a negative correlation between El Niño–Southern Oscillation (ENSO) phases

(an irregular periodic positive anomaly in sea surface temperatures over the tropi-

cal eastern Pacific Ocean–one of the most important tropical teleconnections) and

rainfall anomaly was observed, but in the last 20 years this relationship has shown a

reversal suggesting the absence of a direct linkage [Gadgil, 2003, Dimri et al., 2016].

5.1.2 ASM Onset, progress, and withdrawal

Several studies, e.g. [Wu and Zhang, 1998, Liu et al., 2015], have found a triphasic

space-time structure in the ASM onset process. The onset begins (1st phase) in the
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south-eastern part of the Bay of Bengal (known as the BOB monsoon), associated

with an overturning of the meridional air temperature gradient [Mao and Wu, 2007]

and the development of the so-called “monsoon onset vortex”. This vortex, a low

pressure system over the Central-East Arabian Seas, brings the monsoonal flow

to the South-West Indian paninsula [Deepa and Oh, 2014]. This is followed (2nd

phase) by onset over the South China Sea, driven by atmospheric internal variabil-

ity combined with the thermal and mechanical effects due to orography. The Indian

Summer Monsoon (ISM) onset (3rd phase) can be seen as the northward seasonal

movement of the Intertropical Convergence Zone (ITCZ) [Gadgil, 2003], or alterna-

tively, as the westward propagation of the BOB monsoon. In each onset phase, the

importance of the thermal and mechanical effects of orography and particularly of

the forcing associated with teh Tibetan Plateau has been highlighted several times

[Liu et al., 2015]. It must be noticed that while the specific physical mechanisms

are still open to debate, the triphasic structure is now commonly accepted by the

scientific community. Since the physical characteristics of each component of the

ASM is not relevant for the purpose of this work, we will hereafter simplify the

discussion defining Monsoon the rainy season in India, in agreement with the India

Meteorological Department (IMD).

After the onset, the Monsoon propagates north-westward and covers the entire

Indian territory by middle of July [Pai and Rajeevan, 2009]. The withdrawal runs

backwards the same trajectory, between the 15th September and the end of October.

The Monsoon firstly hits the Indian South-Western state of Kerala. For this, the

onset date is historically established looking at Kerala. In the last twenty years, the

criteria for declaring the onset date have been updated several times, thanks to the

availability of datasets with continuously increasing spatial and temporal resolution.

Criteria used by the IMD and their historical evolution are briefly described here.

It is worth noting that the IMD criteria are being widely used for the evaluation of

new models.

For more than a century, the IMD has established the Monsoon onset date rely-

ing on seven rain gauge stations. The onset was declared on the second consecutive

day after May 10th in which measured rain exceeded 1mm
day

. This method was up-

dated in 2006, when the current criteria were introduced [Pai and Rajeevan, 2009],

in which the onset is declared over the Kerala state, after May 15th:

• At least 60% of the 14 chosen stations rainfall values greater than or equal to

2.5 mm.

• Depth of westerlies should be maintained up to 600 hPa, in the geographical

box extending from the equator to 10◦ N and from 55◦ E to 80◦ E. The zonal
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wind speed over the area between 5 and 10º N, and 70 and 80 ◦E should

be of the order of 15–20 Kts. at 925 hPa. The data source can be either

wind from analyses or satellite derived winds from the Regional Specialized

Meteorological Centre for Tropical Cyclones over North Indian Ocean (RSMC)

• Indian National Satellite System (INSAT) derived Outgoing Longwave Radi-

ation (OLR) value should be below 200 W
m2 in the box confined by Latitude

5–10◦N and Longitude 70–75◦E.

After the onset over Kerala, the Monsoon advances northward across the sub-

continent. Each region has its own onset date, called progress date, which is subse-

quential but not strictly correlated with the Kerala onset date (i.e., a delay in Kerala

does not imply a delay in another country). In this section the so-called progress

normal dates, which are the mean of the progress dates over a certain period, are

presented.

Until 2020 the Monsoon progress normal dates were derived based on a network

of 149 stations: the date of progress of monsoon over a station was taken as the

middle date of the 5 days period showing the characteristic rise in the rainfall curve.

The dates used by IMD were derived in the period 1901–1940. In 2020, a new

method was introduced [Pai et al., 2020] based on a 1×1 gridded dataset (IMD-4)

developed by the IMD and obtained by more than 2000 stations. This method

was defined to obtain progress dates in agreement with the older method and was

calibrated in the period 1961-2019 [Pai et al., 2020]. The Kerala onset date is the

same as illustrated before. The other grid points are divided in 3 categories and for

each category a specific method is defined. As a consequence, these methods are

not physical but created ad-hoc.

In the literature, there are only a few studies about Monsoon withdrawal dates,

especially compared with the studies focused on the onset and progress dates, and

therefore the operational method has not been updated in 2020 [Pai et al., 2020].

The following criteria, adopted in 2006, are used, after September 1st(IMD):

• End of rainfall activity over the area for five continuous days.

• Establishment of anticyclone in the lower troposphere (850 hPa and below).

• Considerable reduction in moisture content as inferred from satellite water

vapor images and tephigrams.

5.1.3 Past and expected changes

In the last decades Indian Summer Monsoon has experienced a weakening in its

circulation pattern and a decrease in its associated rainfall, which has been assessed
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by many studies [Bingyi, 2005, Palazzi et al., 2013], probably caused by the warming

of the Indian Ocean with a consequent decrease of sea-land temperature contrast.

The role of this warming is still unclear and makes future projections uncertain:

Global Circulation Models (GCMs) show a clear linkage between the increase in Sea

Surface Temperature (SST) and the increase in monsoon rainfall, but the recent

weakening of monsoon circulation seems to indicate that this temperature increase

could result in a rainfall weakening, too [Roxy et al., 2015]. CMIP5 models indicate

an increase in mean rainfall for the future, but show a significant inter-model spread

in the representation of the seasonal cycle of rainfall patterns and only few models

could reproduce it satisfactorily when compared to observations. On the other hand,

the latest generation of CMIP6 models confirms the overall future trend found in

CMIP5 and also shows a smaller internal spread, along with a better agreement

with observations [Katzenberger et al., 2021].

5.2 Western Disturbances

5.2.1 Main features

The Indian summer Monsoon decreases while penetrating in the north-west of India

and in northern Pakistan, and does not propagate far enough to reach internal Cen-

tral Asian countries such as Afghanistan, Iran and Tajikistan [Seyed et al., 2006].

On the other hand, these areas are affected by recurrent events of winter precip-

itation (usually in the form of snow), which represent a precious water supply

for the maintenance of glaciers and downstream for population [Seyed et al., 2006,

Palazzi et al., 2013].

This precipitation pattern is caused by the so-called western weather patterns or

Western Disturbances (WDs). The IMD defines them as the “extratropical storms

that originate in the Mediterranean region which brings sudden winter rain to the

north-western parts of the Indian subcontinent”. These extratropical storms carry

moisture in the upper layers of the atmosphere and then are pushed eastward by the

westerly winds, until the interaction with the complex orography of the region leads

to precipitation. Although the mechanism of this simplified model seems straightfor-

ward, the phenomenon has not been fully understood yet [Dimri et al., 2016]. It has

been found that WDs have an important impact on the Summer Monsoon, since they

induce a local change in albedo through snow accumulation on the mountain ranges,

and albedo has an important role in the development of the Monsoon. Nevertheless,

a full understanding of the phenomenon is far to be reached [Dimri et al., 2016].

WD precipitation shows a large interannual variability, and has been found to
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weaken in presence of a positive anomaly of SST in the Arabian Sea. Further-

more, WD precipitation shows a positive anomaly associated with a positive NAO

and a warm ENSO, and a negative anomaly with negative NAO and cold ENSO

[Dimri et al., 2016]. Contrary to the case of the monsoon, WDs do not have a large

literature background concerning their timing (i.e. onset and decay) and evolution.

For this reason, we will keep as reference for their typical period the standard five

months from December to April (DJFMA) as in e.g. [Palazzi et al., 2013].

5.2.2 Past and expected changes

The area interested by WDs (Western Himalayas) has already experienced a signifi-

cant trend in increasing temperatures in the last decades. This especially affected the

mountain areas, making the region a case study of the so-called “elevation-dependent

warming”, i.e. the emerging evidence that mountain environments around the world

are experiencing a more rapid change in temperature. In the period 1961–2006,

the observed warming was of 2-2.5 ◦C above 5000 m and only 0.5 ◦C at sea level

[Xu and Rutledge, 2019]. On the other hand, summer cooling has been reported for

the period 1961–2015 [Krishnan, 2019], with an associated thickening of the local

glaciers. Historical precipitation trends have not been defined, especially due to the

lack of stations in the region [Palazzi et al., 2013].

In the future, temperature is expected to increase with a high level of confidence,

with the possibility of exceeding an increase of 5◦C by the end of the century in the

SSP5-8.5 high emission scenario [IPCC, 2021b]. Projections on precipitation are

more uncertain. CMIP5 models exhibited some spread in the representation of the

precipitation seasonal cycle in the region [Palazzi et al., 2015], and also dynamically-

downscaled datasets showed a similar behavior [IPCC, 2021b]. However, the new

generation of CMIP6 GCMs shows an increment in winter precipitation, assessed

with medium level of confidence in the IPCC AR6 [IPCC, 2021b].

5.3 Seasonal cycle in the HKKH

In this section the seasonal precipitation pattern in the study region is evaluated. We

use the spatial division performed by [Palazzi et al., 2013, Palazzi et al., 2015] to de-

fine climatically-coherent subregions of the entire HKKH: the Hindu-Kush Karako-

ram (HKK) and Himalaya (Him) regions (as shown by Figure 5.1). These boxes

have been created since the spatial features of the Monsoon and the WDs prevent

us from treating the HKKH as a single region, as it is exposed to different circu-

lation patterns affecting precipitation seasonality. In fact, the Himalayan region is
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dominated by Monsoon-controlled dynamics, while in the HKK, precipitation also

occurs during Winter, due to the WDs. In section 5.3.1 we evaluate the spatial

behavior of the seasonal precipitation pattern in the HKKH region in the ERA5

Reanalysis and in the EC-Earth3 Earth System Model, i.e. in the datasets that will

be used for the evaluation of our methodology for seasons identification. Note that

for EC-Earth3 we have three ensemble members (see chapter Data). In this part

we will use the mean of these members, usually known as ensemble mean. Section

5.3.2 contains a literature review of the seasons onset and withdrawal, that from

now on we will also call seasonal breakpoints. The aim of this section is to es-

tablish the reference seasonal breakpoints that will be used for the validation of the

model. Finally, in section 5.3.3 the future trends in precipitation seasonal patterns

will be assessed, using as seasonal breakpoints the ones identified in section 5.3.2.

The results obtained in this part will be compared with the future trends obtained

with the seasonal breakpoints that will result from our algorithm.

As highlighted, the most interesting seasonal pattern in the region is the one

concerning precipitation. Thus, the main focus of our analysis will be on this vari-

able. The analysis presented in this section is performed on precipitation, and also

the result of our methodology for the division in seasons will be discussed focus-

ing on precipitation. Nevertheless, we could assume that precipitation alone is not

enough for the evaluation of seasons. For example, Monsoon onset over Kerala is

determined looking also at winds and OLR, as detailed before. On the other hand,

using a set of ad-hoc chosen variables for each case study would be in contrast with

our purpose of generality. Therefore we decided to use for our model also the sur-

face air temperature. This choice is driven by the fact that total precipitation and

surface air temperature are the most used variables for climatic characterization.

Spatially, surface air temperature in HKKH presents a gradient that follows the

elevation. During the year, the maxima are located in Summer and the minima in

Winter. In this work we decided to omit an in-depth analysis of temperature, which

could be explored in a followup work.

Note on nomenclature: in the following sections, we will introduce three sets of

seasonal breakpoints, i. e., dates which mark the transition between the seasons.

The first is obtained from a review performed on the literature, the second will

be the result of our clustering algorithm. For clarity, from now on we will call

reference breakpoints the first set, and algorithm breakpoint the second one.

As a consequence of the definition we introduced, these breakpoints are static, which

means that they do not change from one year to another. Consequently, a third set is

introduced, and is used for the future evolution of meteorological seasons, obtained

with classification. These ones will be defined as of dynamical breakpoints, since
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these breakpoints can change through years.

5.3.1 Evaluation of the HKK and Him precipitation

As seen in the previous section, rainfall in the North and Northwest areas of India

are affected by the northwestward propagation of the Monsoon and by the eastward

propagation of the Westerly Disturbances, which both weaken in their paths. This

results in a division in two areas: one where the Winter peak is more prominent

than the Summer one, and the other one where the opposite occurs. An evaluation

of this division in the ERA5 dataset shows that the HKK box includes the area

dominated by the WDs characterized by a significant precipitation amount, both in

Winter and Summer (Figure 5.3 A-B). On the other hand, the Him box includes

the areas where the Summer Monsoon is the dominant feature, and excludes the

Eastern sector over Bangladesh, where there is also a significant peak during winter.

An effective method to extract the different role of the monsoon and WDs is to

compare the intensity of the winter and summer peak (Figure 5.3 C). We can note

that the Him box includes the area dominated by the Summer peak while the HKK

box is mostly dominated by Winter peak, except for the South-Western part. In

the EC-Earth3 climate model, the situation is slightly different. Here the difference

of the peaks is evaluated using the whole available period (1850–2100) (Figure 5.4).

The Him box is dominated by the Summer peak with no significant variations over

time. The HKK box is dominated by Winter peak, but its intensity is lower than in

ERA5. Nevertheless, also for HKK no significant variations over time emerge.

Now we evaluate the mean seasonal cycle in the two boxes for both datasets.

For ERA5, as expected, the mean precipitation seasonal pattern is bimodal with

two peaks in the HKK box (Figure 5.5 A), and has only one peak in the Him region

(Figure 5.5 B). For EC-Earth3, it is possible to note a delay of about one month in

both the summer and winter peak, compared to the seasonal cycle in ERA5, in the

HKK region for the historical period (Figure 5.6 A). Furthermore, a small peak can

be observed in November, probably due to a specific bias in the EC-Earth3 seasonal

precipitations cycle, which waa also already assessed by [Palazzi et al., 2015]. In

EC-Earth3 future projections (SSP5-8.5 scenario) for the HKK region (Figure 5.7

A), the winter peak is replaced by a plateau that extends from March to May, while

the summer peak anticipates compared to the historical period. As for the Him

region, the Summer peak in both historical and future simulations of EC-Earth3 is

slightly delayed compared to ERA5 (Figures 5.6 B and 5.7 B). Overall, EC-Earth3

shows a dry bias of about 2 mm/day compared to ERA5.
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Figure 5.3: Summer and Winter peak in HKKH in ERA5 (1979-2020): maximum of total
precipitation seasonal cycle in winter months, i.e. NDJFMA (A), maximum of total precipitation
seasonal cycle in summer months, i.e. MJJASO (B), difference between the maximum in NDJFMA
and MJJASO (C). In the peack difference the seasonal cycle of each grid point has been previously
normalized with min-max normalization, in order to compare the intensity of peaks. Thus blue
areas are dominated by winter peak, and red areas by summer peak. For each graph ERA5 in
the period 1979-2020 has been used. Red contours, shown in all panels, represent the orography
obtained by ERA5, with [m] as unit for the inline values.
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Figure 5.4: Summer and Winter peak in HKKH in EC-Earth3 (1850-2100): same as
Figure 5.4 but for EC-Earth3 climate model on different time windows.
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Figure 5.5: Seasonal precipitation cycles in HKK (A) and Him (B) boxes in ERA5
(1979-2020). The seasonal cycle is computed averaging precipitation for each ordinal day of the
year. Solid lines are the spatial mean, while shadowed areas are the spatial standard deviation.

Figure 5.6: Seasonal precipitation cycles in HKK (A) and Him (B) boxes in EC-
Earth3 historical (1850-2014). Same as Figure 5.5 but for EC-Earth3 historical.

Figure 5.7: Seasonal precipitation cycles in HKK (A) and Him (B) boxes in EC-
Earth3 SSP5-8.5 scenario (2015-2100). Same as Figure 5.5 but for EC-Earth3 SSP5-8.5.
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5.3.2 Breakpoint dates review

For the reference breakpoints, the literature suggests DJFMA as the winter precip-

itation season and JJAS as the summer monsoon season. e.g. [Palazzi et al., 2013].

The two intermediate dry seasons turn out to be only May for Spring and October

and November for Autumn. A finer approach to timing could be performed con-

sidering the normal onset and withdrawal dates proposed by the IMD (Figure 5.8).

The onset date within the Him boundaries is June 8th ± 7 days, the withdrawal

date is October 5th ± 6 days for a total length of 109 ± 11 days. These dates will

be used as reference for the Him box, since a two-season model seems to be the

best approach for this region. For the HKK region the breakpoints suggested by

[Palazzi et al., 2013] will be used for the transition from Autumn to Winter and

from Winter to spring, while we will use the IMD dates for on the onset and with-

drawal date of the Monsoon. IMD dates in HKK boxes are June 25th ± 3 days for

the onset and October 2nd ± 1 day for the withdrawal, with a total length of 89 ±
4 days. Table 5.1 summarizes the reference breakpoints we will use for the model

validation.

Winter Spring Summer Autumn
HKK 1 Dec - 30 Apr 1 May - 25 Jun 25 Jun - 2 Oct 3 Oct - 31 Nov

Dry Monsoon
Him 6 Oct - 17 Jun 18 jun - 5 Oct

Table 5.1: Reference breakpoints in HKK and Him boxes based on literature review. The
seasons names have been chosen arbitrarily, and don’t necessarily have references to the seasons
at mid-latitudes.
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Figure 5.8: Monsoon onset and withdrawal: summer monsoon onset normal date (A),
summer monsoon withdrawal normal date (B) and resulting length of the monsoon season (C).
Figures are obtained by bilinear interpolation of multiple ’single station’ values provided by IMD.
These points are represented by triangles. Red contours are orography obtained by ERA5, with
[m] as unit for the inline values.
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5.3.3 Future trends

Now the rainfall future trends (2020-2100) for multi-members mean EC-Earth3

model for the case study regions making use of the reference breakpoints are eval-

uated. Mean daily precipitation and seasonal accumulated precipitation are chosen

as reference metrics for each season since both of them are sensitive to the seasonal

boundaries. In fact, given the sinusoidal shape of the seasonal precipitation pattern,

changing the boundaries modifies the mean and cumulative values. For this reason,

they are suitable for the comparison between trends obtained with reference break-

points and the ones obtained with algorithm breakpoints. Here we will use a simple

linear regression for trends evaluation. Please bear in mind that there is a wide

spectrum of available methods for the assessment of trends in climatology, such as

nonlinear methods, or nonparametric methods, and the most proper one should be

chosen based on the specific application.

The choice of a linear regression allows us to make a simple consideration about

the relationship between the trend of mean values and cumulative values. If we

assume that the number of days in a season is fixed, there is only a multiplicative

difference in trends of mean and cumulative values: being mt the time series of mean

values, ct the time series of cumulative values, L the linear operator representing

the linear trend, and nt the number of days in a season, the trends for mt and ct

will be respectively:

Tm = L[mt]

Tc = L[ct]

But being mt = ct ∗ nt:

Tc = L[mt ∗ nt]

If nt is constant in time, nt = n, for linearity we can write:

Tc = L[mt] ∗ n = Tm ∗ n

The last identity is not true if nt can change through years, meaning that in this

case there will not be a linear dependency between the two metrics. The reference

breakpoints, as the algorithm breakpoints, are time invariant, i. e. they do not

change throughout the years. So, with these breakpoints the number of days in a

season is fixed and there is a linear relation between mean values and cumulative

value trends. The dynamical breakpoints could change through the years. So,

the number of days in a season is not fixed and this linear relation is no longer

guaranteed. Now the results obtained with reference breakpoints are presented.

Note that being mean values trends and cumulative values trends linearly related,
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presenting both of them would be redundant. For this reason, now only the mean

values trends are presented.

With the reference breakpoints, an overall precipitation increase in HKK is

expected in the period 2020-2100 under the SSP5-8.5 scenario, except for Autumn

(Figure 5.9 D). This increase is particularly pronounced in the South-East area in

Summer and North-West in Winter (Figure 5.10 A, C), suggesting an increase of

precipitation associated respectively to Monsoon andWDs. Also in Him box positive

trends are expected, especially in mountain areas during Monsoon season (Figures

5.11 and 5.12). A spot of positive significant trends in South-East area in the Dry

season (Figure 5.12 A) suggests caution, since this is the area that is firstly hit by

monsoon and last left by its withdrawal. This trend may be therefore caused by

a stretching of the monsoon season, and will be verified at the light of the results

obtained with dynamical breakpoints.

Figure 5.9: HKK mean seasonal precipitation future trend boxplot (reference break-
points): linear trends are computed with a Mann-Kendall test for monotonic trend over each grid
point. Trends are computed for each season defined with reference breakpoints separately, using
data contained in EC-Earth3 dataset for future projection under SSP5-8.5 scenario. Each scatter
point represents the trend of a grid point. Red markers indicate points whose p-value exceeds
the threshold of 0.05, and are therefore considered non significant. The boxplot only represents
significant values.
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Figure 5.10: HKK seasonal mean precipitation future trend (reference breakpoints):
the method is the same of figure 5.9. Here non-significant values are shown in white. Red contours,
shown in all panels, represent the orography obtained by ERA5, with [m] as unit for the inline
values.

Figure 5.11: Him mean seasonal precipitation future trend boxplot (reference break-
points): same as figure 5.9.
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Figure 5.12: Him seasonal mean precipitation future trend (reference breakpoints):
same as figure 5.25.

5.4 Results of the model

This section contains the application of the algorithm designed in this thesis (Chap-

ter 3) to the HKK and Him regions. As detailed before, for the identification of sea-

sons both surface air temperature and total precipitation are used, but the results

are exposed focusing on precipitation. In the first part, the Radially Constrained

Clustering algorithm is used on the ERA5 dataset over the period 1979-2020. This

will allow for the identification of the algorithm breakpoints, i.e. the dates which

mark the transition between seasons defined in a data-driven way. These breakpoints

will be compared with reference breakpoints to assess the results of the algorithm.

The meteorological seasons obtained in this part will be used as base ground for the

assessment of the seasons in the EC-Earth3 future climate simulations. This will be

done in the second part of this section, where the classification of EC-Earth3 data

into the seasons is performed making use of the SoftMax perceptron. The classifi-

cation will be performed for each ensemble member both in historical period and

future projection with SSP5-8.5 scenario. This will lead to the identification of the

dynamical breakpoints. There are three scientific questions we will try to answer in

this part:

1. How much the EC-Earth3 representation of the seasons could be considered

reliable, compared with ERA5 one. This will be addressed by comparing the

algorithm breakpoints with dynamical breakpoints in historical period.

2. How meteorological seasons have changed in the historical period, and how

they will change in the future, according to EC-Earth3. This will be addressed

evaluating the time evolution of dynamical breakpoints.
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3. How an evolving recognition of meteorological seasons influences the changes

in future season-dependent precipitation. and the related trends in mean and

cumulated seasonal values. This will be addressed computing the trends with

dynamical breakpoints and comparing them with the ones obtained with ref-

erence breakpoints.

In section 5.4.1 the optimal number of seasons is estimated using a combination

of the elbow method and silhouette score, to validate the goodness of the number of

seasons found in literature. In section 5.4.2 the clustering is performed. Both these

operations are carried out on ERA5 dataset over the period 1979-2020. In section

5.4.4, EC-Earth3 data are classified. Finally, in section 5.5, the results are briefly

discussed.

5.4.1 Number of seasons

The ideal number of seasons is evaluated using the ERA5 dataset. Radially Con-

strained Clustering (RCC) is performed for a number of clusters in range [1; 10] and

for each result the total Within Sum of Squares (WSS) and the silhouette coefficient

are computed. WSSs are reported in the elbow graph and tend to decrease when

increasing the number of clusters. Thus, the optimal number is usually chosen tak-

ing the point after which the gain decreases, i.e. the elbow of the graph. Silhouette

score compares the intra-clusters distance with the inter-clusters distance and has 1

as its optimal value.

According to the silhouette score, for the HKK box an optimal number of clusters

seems to be N = [7, 9], since they are the values that achieve the highest scores

(Figure 5.13 B) meaning that clusters are well differentiated. On the other hand,

this will result in a high number of seasons which would be of a length of about less

than two months. A 4 seasons analysis, as found in literature, seems to be a good

approach in elbow graph (Figure 5.13 A), but achieves a bad score in silhouette

(Figure 5.13 B), meaning that the clusters are not well differentiated. A good

compromise between the two metrics seems to be N = 6: elbow graph shows a

decrease in gain and silhouette achieves a relatively good score. Nevertheless, the

algorithm breakpoints achieve better scores in both elbow graph and silhouette

compared to reference breakpoints (Figure 5.13 A B). In the following of this work,

we will continue to use N=4 in order to get results comparable to literature. A

future development of this work could be done varying the number of seasons, using

a value that is more performing in the metrics.

In the Him region both metrics suggest that a 2 seasons clustering is the best

approach: silhouette achieves the best score and the elbow in elbow graph is clearly
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distinguishable, meaning that the clusters are well defined and differentiated. Being

two also the reference breakpoints, we will continue our analysis with this number

of seasons.

Figure 5.13: HKK number of seasons metrics: dashed lines are metrics computed with
RCC algorithm, black stars are the metrics computed on the clusters obtained with the reference
breakpoints

Figure 5.14: Him number of seasons metrics: dashed lines are metrics computed with
RCC algorithm, black stars are the metrics computed on the clusters obtained with the reference
breakpoints

5.4.2 Clustering results

In this section the RCC algorithm is used on ERA5 dataset to compute the algorithm

breakpoints in order to obtain the data-driven seasons. This operation is performed

with 4 clusters for HKK and 2 clusters in Him, as documented in the previous

section.
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Clustering performed over the HKK region shows a good agreement with ref-

erence breakpoints (Figure 5.15). The succession of seasons is respected, and the

length is almost everywhere similar to the one described by reference breakpoints.

The result on the transition from Spring to Summer is particularly remarkable: this

breakpoint is assessed by many studies in literature and could be reproduced with

great precision by the model. The discrepancy with Winter withdrawal can be traced

back to the fact that this reference breakpoint does not recognize units smaller than

1 month. On the other hand, the starting Winter breakpoint shows an advance of

1 month from the reference one.

In the Him box the cluster performed with 2 seasons shows a good agreement

with the reference breakpoint in the transition from Monsoon to Dry, but has a shift

of about one month in the transition from Dry to Monsoon (Figure 5.16). In Table

5.2 the reference and algorithm breakpoints are reported.

Figure 5.15: Clustering results in HKK: solid lines are values averaged on the whole region,
shadowed areas are spatial standard deviations. Clustering results are reported as background
colors, while blue lines are reference breakpoints.

Winter Spring Summer Autumn
HKK Algorithm 24 Jan - 20 Apr 21 Apr - 25 Jun 25 Jun - 27 Sep 28 Sep - 23 Jan

Reference 1 Dec - 30 Apr 1 May - 25 Jun 25 Jun - 2 Oct 3 Oct - 31 Nov
Dry Monsoon

Him Algorithm 1 Oct - 9 May 10 May - 30 Sep
Reference 6 Oct - 17 Jun 18 jun - 5 Oct

Table 5.2: Reference and algorithm breakpoints in HKK and Him boxes based on literature
review and on the results of RCC algorithm. The seasons names for RCC results have been assigned
arbitrarly.
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Figure 5.16: Clustering results in Him: solid lines are values averaged on the whole region,
shadowed areas are spatial standard deviations. Clustering results are reported as background
colors, while blue lines are reference breakpoints.

5.4.3 Training of the SoftMax perceptron

In order to proceed with the classification of the EC-Earth3 data, the SoftMax

perceptron must be trained and tested with the labeled dataset obtained in the

previous section.

For the HKK box, the SoftMax perceptron is setted with 140 input units (2

variables * 10 lon points * 7 lat points) and 4 units in the output layer, corresponding

respectively to Winter, Spring, Summer and Autumn seasons. The quality of the

perceptron learning will be assessed making use of the metrics described in Chapter

Methods.Looking at the learning curves, we can assume that 50 epochs are enough

for the training. Indeed, the accuracy reached stability (Figure 5.17 B) even after

30 epochs. The loss seems to be able to decrease further (Figure 5.17 A), but since

there is no improvement in accuracy we assume that it is not necessary to increase

the number of epochs. From the test phase we can state that the model is able to

learn the relationships between data and seasons, achieving good scores with fresh

new data (Figure 5.18). In fact, precision and recall are > 0.99 for all the seasons.

For the Him box, the SoftMax perceptron is setted with 440 input units (2 vari-

ables * 20 lon points * 11 lat points) and 2 units in the output layer, corresponding

respectively to Dry season and Monsoon season. The learning curves suggest that 40

epochs are enough for the training. Also in this case, despite loss seems to decrease

further (Figure 5.19 A), accuracy has reached stability (Figure 5.19 B). Again, the

confusion matrix states that the model has a good performance (Figure 5.20), with

precision and recall > 0.99.
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Figure 5.17: Learning curves for HKK: loss on training and validation sets (A), accuracy on
training and validation sets (B).

Figure 5.18: Confusion matrix for HKK: number of items belonging to each class versus
number of items classified in each season. The elements on the diagional are the items correctly
classified.
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Figure 5.19: Learning curves for Him: loss on training and validation sets (A), accuracy on
training and validation sets (B).

Figure 5.20: Confusion matrix for Him: number of items belonging to each class versus
number of items classified in each season. The elements on the diagional are the items correctly
classified.
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5.4.4 Results of classification on climate projections

Now the SoftMax perceptron is used to classify the data in EC-Earth3. As detailed

in Methods chapter, for both HKK and Him boxes, the classification performed with

the SoftMax perceptron assigns to each day in EC-Earth3 the probability that this

day belongs to each season separately. As explained in the Dataset chapter, we

have three ensemble members of EC-Earth3 (r1i1p1f1, r13i1p1f1, r15i1p1f1). Each

of them is composed of the historical period (1850-2014) and the future projection

under the SSP5-8.5 scenario (2015-2100). The classification is performed for each

day of each ensemble member, in order to obtain three possible realizations of the

meteorological seasons, which spans from 1850 to 2100. This range is reduced due

to the 30 years moving average performed on seasonal cycle (see Dataset chapter),

so that the actual results span from 1865 to 2085.

An overall result is obtained by averaging this probability through ensemble

realization. That is to say, for each day the probability that it belongs to each

season is average through ensemble members. Thus we can assign each day to the

season that achieves the highest probability (the so-called arg max mathematical

function). The arg max is one of the possible interpretations of this probabilistic

output. The result is a single breakdown of the days in the meteorological season.

A future development of this work could try to explore more powerful methods to

extract information from this type of result.

This operation is performed for both HKK and Him boxes. The first result is

that for both the regions the succession of seasons is respected quite evenly (Figures

5.21 and 5.22). This is non-obvious since the SoftMax perceptron does not have

information about the time location of each day on the calendar year. This fact

means that the SoftMax perceptron is able to extract relevant features from the

ERA5 dataset, and that these features are correctly recognized in EC-Earth3.

The Autumn and Winter seasons in HKK are an exception to this result (Figure

5.21). They are quite fragmented and a relevant spot of Winter day could be found

in the middle of the Autumn, especially in the period 1900-2020. This is probably

due to the third peak that was observed in Figure (5.6), and which was stated to

be an error of EC-Earth3. In this sense, this result could help in locating incon-

sistency in EC-Earth3 seasonal cycle representation. The fragmentation of Winter

and Autumn boundaries in HKK could be due to the fact that these seasons are not

well differentiated. In fact, we stated in section 5.4.1 that four seasons is not the

optimal choice for the HKK. A further development of this work could investigate

if changing the number of seasons produces more stable results in this sense.

In Him box the seasons are contiguous and the boundaries are not fragmented

(Figure 5.22). Since the clustering was performed with the optimal number of sea-
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sons, which is two, this gives value to the hypothesis that the fragmentation in HKK

Winter and Autumn is caused by a bad choice of the number of seasons.

Figure 5.21: Time evolution of seasons in HKK: results of the SoftMax perceptron clas-
sification for the whole period in EC-Earth (1850-2015 historical, 2015-2100 SSP5-8.5 scenario).
Black lines are the algorithm breakpoints, and white shaded area represents the period used in
ERA5 for the seasons definitions.

Figure 5.22: Time evolution of seasons in Him: same as Figure 5.21.

The next step is evaluating the time evolution of the length of each season.

This is addressed simply counting the number of days contained in each season. We

perform this operation on the results obtained for each ensemble member and for
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the ensemble mean of probabilities obtained with the procedure explained in section

5.4.4.

In both regions we can note an increase in the Monsoon associated seasons length

(named as Summer in HKK, Monsoon in Him) (Figures 5.23 and 5.24). While this

is obviously related to a shortening of the dry season in Him (Figure 5.24), being

only two seasons, this is not in HKK where we used four seasons. In HKK (Figure

5.23) we can note that Summer and Spring have a low interannual variability. They

are stable in the historical period while in the future projection Summer tends to

increase its duration, and Spring tends to shorten it. Winter and Autumn have a

large interannual variability in the historical period, and also shows a large spread

between the ensemble members. In this period they also show complementarity, i.e.,

when Autumn is longer Winter is shorter and vice versa. This confirms the difficulty

of SoftMax perceptron in the identification of these two seasons in HKK, as stated

above. Nevertheless it is worth to note that this behavior tends to disappear in the

future projection under the SSP5-8.5 scenario. What we observe here is an increase

in the duration of the Autumn season, and a shortening of Winter. There is a double

interpretation of that: 1) the changes in seasonal patterns driven by the climate

change are differentiating these two seasons making them more distinguishable for

the SoftMax perceptron or 2) it is only a phase of a cycle, and if we could see further

in time, we would see a behavior similar to the one observed in the historical period.

Even in this case, an analysis performed with a different number of seasons might

help answer this question.

The trend observed in Him is more clear (Figure 5.24), the shortening of the

Dry season and the stretching of the Monsoon season is present in all the ensemble

members, which also show a low spread.
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Figure 5.23: Time evolution of seasons length in HKK: dotted lines are the results of each
ensemble member in Ec-Eart3h, while solid lines are the members’ average.

Figure 5.24: Time evolution of seasons length in Him: same as Figure (Figure 5.23).
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5.4.5 Future trends with dynamical seasons

As we stated in section 5.3.3, a redefinition of seasonal breakpoints could imply

a change in the mean and cumulative values of precipitation in the seasons, and

therefore a change in their trends. Furthermore, using the dynamic breakpoints

obtained from the SoftMax perceptron on EC-Earth3, the season length is no longer

forced to be constant through years. This means that there could not be a linear

relationship between cumulative and mean values trends, as happened with reference

breakpoints. In this subsection we present the future trends on rainfall seasons mean

and cumulative values are computed, computed using the dynamical breakpoints

obtained before.

In HKK in all four seasons an increase in mean precipitation is expected, mainly

in center and North areas (Figure 5.25 A, B, C, D), which are the mountain areas.

This increase is lower than the one obtained with reference breakpoints in Summer

(Figure 5.27 C) but with less spread between the grid points. In Winter (Figure

5.27 A) the mean values trends computed with dynamical breakpoints are slightly

higher than the ones computed with reference breakpoints. Cumulative values trends

computed with dynamical seasons are everywhere positive and higher than the ones

obtained with reference breakpoints (Figure 5.27 E, F, G, H). This is particularly

remarkable in Spring and Autumn (Figure 5.27 F H), which are the seasons which

receive less precipitation. Spatially, this increase is concentrated in the North-West

area in Winter (Figure 5.26 A), in the Center area in Spring (Figure 5.26 B), in the

East and South areas in Summer (Figure 5.26 C) and in the South-West in Autumn

(Figure 5.26 D)

A similar pattern could be observed in Him Box. Average values trends are

higher in Winter (Figure 5.30 A) and lower in Summer (Figure 5.30 B) than the

ones computed with reference breakpoints. On the other hand, cumulative values

trends obtained with dynamical seasons are higher than the ones obtained with

reference breakpoints (Figure 5.30 C, D). The increase in mean values is localized in

the Center mountain area (Figure 5.25 A B). About Figure 5.28, we stated that with

reference breakpoints there was a spot of significative high values in the South-East

area, and we warned that could be caused by a stretching of the Monsoon season.

This stretching was actually observed (Figures 5.22 and 5.24), and the trends are

now positive not only in the South-East but also in the Center. In Him we can also

note that the spatial distribution of cumulative values trends is similar to the one

of mean values trends (Figure 5.28).
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Figure 5.25: HKK seasonal mean precipitation future trend maps (dynamical break-
points): the method is the same as Figure 5.10 but with dynamical breakpoints.
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Figure 5.26: HKK seasonal cumulative precipitation future trend maps (dynamical
breakpoints): the method is the same as Figure 5.10 but with dynamical breakpoints and trends
computed for cumulative values.
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Figure 5.27: HKK seasonal mean and cumulative future trend boxplots (dynamical
and reference breakpoints): the method is the same as Figure 5.9 but with dynamical break-
points and reference breakpoints for comparison (see y-axis labels). Letters A to D represents
values and boxplots for mean values trends, letters E to H for cumulative values trends

Figure 5.28: Him seasonal mean precipitation future trend maps (dynamical break-
points): the method is the same as Figure 5.10 but with dynamical breakpoints.



5.4. RESULTS OF THE MODEL 85

Figure 5.29: Him seasonal cumulative precipitation future trend maps (dynamical
breakpoints): the method is the same as Figure 5.10 but with dynamical breakpoints and trends
computed for cumulative values.

Figure 5.30: HKK seasonal mean and cumulative future trend boxplots (dynamical
and reference breakpoints): the method is the same as Figure 5.27. Letters A and B represents
values and boxplots for mean values trends, letters C and D for cumulative values trends
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5.5 Discussion

In this chapter we applied a set of data-drive approached designed for the definition

(Radially Constrained Clustering) and classification (SoftMax perceptron) of the

meteorological seasons to the region of Hindu Kush Karakoram Himalaya (HKKH),

in present day and future climate, making use of both reanalysis and EC-Earth3

climate model data. Due to the peculiarity of the precipitation pattern in this

region, we were interested in the evaluation of the seasonal cycle of precipitation.

A review on literature led us to the identification of the main dynamical mecha-

nisms driving the precipitation in the area, which are the Indian Summer Monsoon

(ISM) and the Western Disturbances (WDs). We referred to literature for the detec-

tion of the regions in which these phenomena are most relevant, so that we divided

the HKKH region in the subregions of Hindu-Kush Karakoram (HKK) and Himalaya

(Him). HKK is below the influence of both ISM and WDs, and shows a bimodal

seasonal precipitation cycle with a peak in Winter and one in Summer. On the

other hand, the seasonal cycle of precipitation over the Him sector is charctarized

by only one peak in Summer, since it is not reached by WDs. In section 5.3.1 we

showed the main features of these regions are respected in the dataset we used in

this work, ERA5 and EC-Earth3, although some signficant bis exist in the Autumn

precipitation pattern in the climate model.

Thus we analyzed the breakpoints, i.e., the days that mark the transition from

a season to another. Firstly we referred to literature for the identification of the

reference breakpoints. It results that HKK can be mainly described with four seasons

(which we called Winter, Spring, Summer and Autumn in analogy with mid-latitude

seasons) and Him with two seasons (usually defined as Dry and Monsoon). The

breakpoints referring to the monsoonal season (Monsoon in Him and Summer in

HKK) are the best assessed in literature, while the other seasonal transitions are

not supported by the same amount of literature. We showed that, even though two is

the optimal number of seasons for Him, in HKK a four seasons analysis from a data-

driven point of view does not seem to be an optimal choiche (section 5.4.1): indeed,

this leads to the identification of seasons which are not well differentiated. This is

a remarkable point: in the continuation of the work we stated that a suboptimal

choice in the number of seasons could badly affect the analysis. This ill-conditioning

is not only a formal issue. In fact it may entail results that are difficult to interpret,

leading to a bad understanding of the seasonal cycle. Thus, we point out that a

more accurate choice of the number of the meteorological seasons is necessary in

seasonal analysis, which are largely used in Climate sciences. Nevertheless, in order

to get results comparable with literature we continued to use 4 seasons in HKK.
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We thus evaluated the algorithm breakpoints in both regions with RCC on

ERA5 data, and we found results relatively agreeing with reference breakpoints.

This results underlines the adequacy of both the chosen algorithm (RCC) and metric

(Euclidean distance). Indeed, they are capable of reproducing the results found in

literature, which are calibrated to the specific regions, without needing to defining

anything rather than the number of seasons. Nevertheless, a more accurate analysis

of the implication of the choice of the metric should be carried out in followup work.

Then the seasons found with RCC in ERA5 have been used to train the SoftMax

perceptron, which was used to classify the EC-Earth3 dataset. The training and

testing of theSoftMax perceptron showed that it is capable of learning the seasonal

features of the data, and detecting them in fresh new data. Thus, the investigation

of different methods does not seem necessary.

Once the SoftMax perceptron has been trained, it has been used to classify

the EC-Earth3 dataset. An overall analysis of the result shows that, while the

classification in the Him box is stable, in HKK Autumn and Winter are fragmented.

At the light of what we said before, this could be caused by two reasons: 1) the

bias in the EC-Earth3 representation of the seasonal precipitation pattern, with a

third peak in November, 2) the suboptimal choice of the number of seasons. The

first hypothesis is supported by the fact that a spot of Winter days is found in

November, and the second by the fact that the fragmentation is also present at the

seasonal boundaries, suggesting that seasons are not well separated as they appear

to be for example in Spring. This fragmentation tends to shrink in future projection

under SSP5-8.5 scenario. Thus we assumed that the change in seasonal cycle driven

by Climate Change is increasing the differences between these two seasons. This

application shows that the methodology we developed can be used as a tool for the

validation of the seasonal cycle representation in Earth systems datasets.

In the last part of this chapter, we applied the classification performed with

SoftMax for the identification of the dynamical breakpoints. Thus, we used the

dynamical breakpoints for the evaluation of seasons length and for the computation

of the future trends under SSP5-8.5 scenario of precipitation seasonal mean and

cumulated values. We thus compared these results with the ones obtained with

the reference breakpoints. About these results, an overall increase in precipitation

amount is reported with both seasons definitions. This is not surprising, since global

increase in precipitation in all seasons is something well assessed in literature and in

line with what theoretically expected from a global warming perspective. The most

remarkable result we obtained with the introduction of dynamical seasons is the

correction in the intensity of these trends. The seasons associated with the Indian

Summer Monsoon (Summer in HKK and Monsoon in Him) are probably going to
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increase in duration. This implies that mean precipitation values computed with

dynamical seasons are lower than the ones obtained with reference breakpoints. On

the other hand, cumulative values are higher. The opposite is expected to occur in

the Winter season in HKK and in the Dry season in Him. These seasons are going

to decrease in duration, with mean values computed with dynamical breakpoints

higher than the ones computed with reference breakpoints, and cumulative values

lower than the ones computed with reference breakpoints. Once again, this has

not only formal implications. The power of seasonal analysis consists in the fact

that they can condense information about the state and evolution of climate, which

are used, among other things, for the development of strategies of adaptation. A

more correct and complete extraction of this information could lead to a better

understanding of the climate system.



Chapter 6

Conclusions

We started this thesis wondering if the meteorological seasons could be defined in a

way which is more robust and reliable than the heuristic approach which is commonly

used nowadays. This led to the work hypothesis on which the whole work has been

based on, that is to say that seasonality in Earth’s climate system leads to the

emergence of periods within a year with similar statistical behaviour, which are

internally similar, and well differentiated from each other. We also stated that this

assumption is non trivial, since a continuous periodical signal such as seasonality

could not be suitable for this division. In light of the results obtained in the case

study, we can conclude that our work hypotesis was well conditioned. The analysis

performed on the Hindu-Kush Karakoram/Himalaya (HKKH) regions resulted in

the recognition of seasons which are physically meaningful, being able to reproduce

the main physical features of the seasonal patterns that we identified in a review on

literature.

For the practical recognition of the meteorological seasons in climate data, we

decided to rely on a set of machine learning tools. The choice of machine learn-

ing was driven by the fact that these kind of algorithms are being deployed in a

wide range of applications, included climate sciences, with remarkable results. In

our case, we expected to obtain from machine learning algorithms a recognition of

the meteorological seasons which is physically meaningful and well understandable,

without the need of human supervision. We selected two algorithms: the Radi-

ally Constrained Clustering (RCC) for the recognition of seasons, and the SoftMax

perceptron for the evaluation of their evolution in different periods and/or datasets.

With the application of these algorithms to the HKKH case study, we obtained

multiple interesting results. Firstly, the evaluation metrics for the RCC on ERA5

suggested a correction for the total number of seasons to use for the description

of the seasonal patterns of total precipitation and surface air temperature, with

respect to the number used in our literature references. Forcing the clustering to

89
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perform using the number of seasons found in literature resulted in a definition of

meteorological seasons which is similar to the reference one. We can thus conclude

that the RCC is a good tool for the definition of the meteorological seasons, and

that the metric we chose (Euclidean distance) is suitable for this purpose.

Then we used the SoftMax perceptron for evaluating the evolution of these

seasons in the global climate model EC-Earth3. We focused on how this dataset

reproduce the seasons with respect to ERA5, and how these seasons will change in

the future, under the SSP5-8.5 scenario. Here we found that the SoftMax perceptron

is able to identify a bias in the seasonal pattern of precipitation which is well assessed

in literature. For the evolution in the future, we evaluated the length of the seasons

and we compared the trends of two seasonal metrics (daily average precipitation

and seasonal cumulated precipitation), computed with both the seasons found in

literature and the ones obtained with the SoftMax perceptron. We found that the

length of the seasons in HKKH is expected to change considerably in the future,

and that this comports some corrections on the trends we evaluated. We do not

have enough elements to state if these correction are correct, and we leave these

kind of evaluation for followup works. On the other hand, we can conclude that

approaching the division in seasons using ’static’ seasons, that is to say a division

which is the same through different periods, is a wrong choice, especially with the

changes that are projected in future climate due to climate change.

We can conclude this thesis stating that a more robust and rigorous approach to

the meteorological seasons with respect to the one which is commonly used nowadays

is possible. Meteorological seasons are entities which can be defined in several ways

depending on the variables and locations we take into account, and their recognition

through specific, physically-driven approaches, could result in an onerous work. The

data-driven way using machine learning algorithms has proven to be reliable, easy to

implement, and able to give a better understanding of what meteorological seasons

are and how they will change in the future.
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