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Chapter 1

Introduction: what are the

seasons?

The concept of seasons is something that everyone has in mind, since it is part
of daily life. On the other hand, giving a shared and unique definition of what
the seasons are seems a harder task. Firstly, because there is not only a type of
seasons: there are astronomical seasons, meteorological seasons, but also the flu
season, the high season of a tourist destination, and so on. We are used to associate
the concept of seasons to everything that shows a certain periodicity, which we call
seasonality. But, if this periodicity is the seasonality, what is the formal definition
of seasons? This lack of clarity seems not to be confined to terminology and leads
to an ambiguity that can become limiting when, for example, we wonder what will
happen to the seasons in the future. A first approach for trying to give a shape to
the concept of seasons should start from seasonality itself.

Seasonality is a wide concept which affects many aspects of everyday life. How-
ever, the definition of seasonality is not straightforward: it could be defined in a
general way as a recurring pattern or even cycle that occurs at regular intervals
within a specific time frame, and it could be observed in a wide range of natural and
human made phenomena. Earth science disciplines (meteorology, botany, glaciol-
ogy, etc. etc.), but also economy, finance, epidemiology, and a wide range of other
sectors, show seasonal patterns.

The correct identification of seasonal patterns is a crucial step when dealing with
phenomena related to several of the above-mentioned sectors. A correct identifica-
tion of seasonality allows us to deeply investigate the features of the phenomenon
we are studying, and to achieve a better understanding of it. This has multiple pos-
itive repercussions, since it allows us to make better decisions and develop adequate
strategies for the specific problem, or even develop methods for forecasting.

While seasonality is a property which shows itself in the manifestation of a
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8 CHAPTER 1. INTRODUCTION: WHAT ARE THE SEASONS?

phenomenon, its source is often more difficult to investigate, as it is the result
of many mutually interacting factors. In meteorology, seasonality is the tangible
demonstration of the earth axis obliquity with respect to the rotation plane. In the
economy, e.g. in tourism, seasonal patterns are affected by climate and weather,
social customs (e. g. holiday periods), business customs and need for supply. In
epidemiology seasonality leads to the propagation of flu and other pathogens which
is determined by biological, social, and environmental factors. Thus, a first approach
to seasonality problems is often done investigating the behavior of the phenomenon,

rather than its causes. This approach is the so-called time series analysis.

In meteorological and climatic sciences seasonality is an element which plays a
central role. Being an essential element of Earth’s climate system, seasonality is used
to characterize the climate of different regions. Also projections of future evolution
of climate are analyzed looking at changes of the seasonal pattern. The ability to
reproduce seasonal patterns is also used for the validation of climate models, i.e.,

numerical models which simulate the behavior of Earth’s climate system.

Especially when dealing with meteorology and climate, we often refer to sea-
sonality using the concept of seasons. Although this could seem only a matter of
terminology, it is not. The seasons are the periods in which we artificially divide the
year, and last typically three months. Seasonality, being an oscillation, is typically
modeled using continuous functions, such as sinusoidal functions. This means that
somewhere stands the assumption that dividing the year in seasons is a good way

to describe the Earth’s climate system seasonality.

It is worth pointing out that in everyday language, when speaking of weather and
climate, we often use the word seasons ambiguously, referring to what are techni-
cally called astronomical seasons. The astronomical seasons are defined on rigorous
criteria, based on geometrical factors of rotation and revolution of the Earth. The
different behaviour of the meteorological weather in different periods of the year is
described by the so-called meteorological seasons. Astronomical and meteorological
seasons are strictly related: the inclination of the rotation axis with respect to the
rotation plan determines in different periods of the year a different distribution of
the solar radiation through the Earth’s surface. Nevertheless, meteorological and
astronomical seasons could not be treated as a single entity, since the response of
the weather at different insolations can vary considerably depending on the locality.

In this work we will use the word seasons referring to the meteorological seasons.

After this necessary digression on the nomenclature, we can go back to wondering
about the link between seasonality and meteorological seasons. Looking at it from
another point of view, if each of the 365 days in a year typically has its own climatic

behavior due to seasonality in a specific locality, then seasonality could be described



by 365 values. The definition of the seasons implicitly assumes that the information
contained in these 365 values could be condensed in (typically) four values, one for
each season. Intuitively, this could seem a good description of the seasonal cycle.
If we look, for example, at the behavior of atmospheric conditions in January 1%
of any one year, and compare it to the behavior of January 1% of another year,
we will probably observe two different conditions. This is due to the variability of
the system at high frequencies. On the other hand, we can take all the January
1%'s in a sufficiently wide range of years (typically 30 years, and in this case we are
talking about Climatology) and obtain a distribution of possible conditions for the
first day of the year. We will probably be able to observe that this distribution is
quite similar to the one obtained taking all the January 15*s, or January 30%s,
but different to the one obtained taking July 1%¢. Thus, grouping days with similar

distributions seems a logical approach.

Although, despite the extensive use we make of them, meteorological seasons
are more an heuristic concept than well defined entities. This is primarily due to
the fact that it is not possible to give a globally valid definition of meteorological
seasons. In fact seasonal patterns vary according to the locality (e.g. orography, veg-
etation, prevailing winds, etc.) and the specific physical variables that we take into
account. At midlatitudes, we often consider four seasons looking at temperatures: a
hot one (Summer), a cold one (Winter) and two transition seasons (Spring and Au-
tumn). In subtropical areas subjected to monsoonal dynamics, the seasonal division
is performed distinguishing between the monsoonal wet season and the dry season
And many other example could be found. These seasonal divisions are most of the
times based on heuristic consideration. When they are performed on more rigorous
criteria, it requires a long work for the identification of the physical variables and
threshold to be taken into account. Furthermore, the division into seasons usually
rarely recognizes a time resolution inferior to one month. The last problem we point
out is that the same division into seasons that is used nowadays, is always used
when analyzing the future projection obtained by climate models. There is multiple
evidence that in the last decades a wide range of seasonal patterns has changed, and
we can then assume that also the division into seasons should be constantly verified

and updated.

The first purpose of this work is to develop a methodology for the identification
of meteorological seasons in climatic datasets, trying to minimize the arbitrary as-
sumptions. This methodology will be constructed with the aim of being as general as
possible and consequently applicable to the most disparate cases. As we highlighted
before, approaching the problem of the division in seasons in a physically-driven way

shows many difficulties related to the variability with which seasonal patterns show
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in different areas. Thus, we will try to use a data-driven approach, making use of a
series of machine learning tools. As we will explain, the power of machine-learning
relies on the fact that a set of algorithms could be instructed to autonomously
recognise the best criteria to use for the division in seasons.

Our second purpose is to find a way for evaluating how the seasons detected are
represented in different climate datasets. This would result in at least two insightful
applications. One the one hand, this will provide us of a tool for evaluating how
different datasets represent the seasons. For example, this can be used to robustly
analyze the presence of bias in the representation of seasonal cycle in climate models

In light of what we said before, this could be a powerful tool in the validation
of climate models. On the other hand, this will allow us to study to what extent
the seasons we are experimenting nowadays are expected to change in the future,
making use of the projection made by climate models.

Both of our goals are pursued by trying to develop a general methodology. Such
methodology will be applied to a selected case study making use of total precipitation
and the surface air temperature, which are the two most used variables for climatic
characterizations, to define seasons.

This thesis is structured as follows. Firstly, in Chapter 2, we give a formal
overview of time series analysis and of the required assumptions in order to defining
the seasons starting from the concept of seasonality. Then, in Chapter 3, we de-
scribe the design of the machine learning algorithms that we chose for achieving our
purposes. Chapter 4 provides a brief description of the datasets we will use for a first
application of our methodology. These datasets are the ECMWF ERA5 Renalysis
for the recognition of seasons in the present and recent past, and the EC-Earth3
Earth System Model for the tracking of seasons evolution. Finally, in Chapter 5 we
apply our methodology to a case study, which is the Hindu Kush Karakoram Hi-
malaya region, in the northern part of the Indian subcontinent. The main scientific

questions we will try to address in this part are:

e Is the division in seasons that we are currently using correct? We will try to
answer this question both about the number of seasons and the dates we use

for the splitting.

e How are the seasons recognised by machine learning represented in a climate

model?
e How are these seasons expected to change in the future?

It is worth noting that this work represents an original attempt to apply meth-

ods taken from different domains to a problem that is not well documented in the



literature, such as the definition of the meteorological seasons. Thus, we will try to
present the results obtained in this dissertation with a special focus on what can be

improved or needs further investigation.
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Chapter 2
Seasons and seasonality

As seen in the previous chapter, there is a lack of shared and uniform definitions of
meteorological seasons, and it is not easy to find a common ground even to define
methods for their recognition. This is mainly due to the differences among seasons
behavior in different regions of the world, in timing, amplitude of the signal and
involved variables. In this work we will not try to fill this lack of definitions in
an exhaustive way, being generality and flexibility the main objectives we want to
achieve. Nevertheless, some general criteria and assumptions about what makes
seasons distinguishable elements of the climate system must be introduced, in order
to have a starting point for the construction of our methodology. In this chapter
we will try to formulate a work hypothesis, which relies on some basic concepts of
time series analysis. Section 2.2 contains a formal treatment about seasonality in
time series analysis, seen as a deterministic signal. In section 2.3 the application
to multidimensional climatic data is presented, along with the assumptions which
allow us to transform this continuous signal into a finite number of similar periods

within them, which would be the seasons.

2.1 Seasonality on time series analysis

Since seasonality is a wide concept which affects phenomena in a wide range of
sectors, there are many ways to approach its evaluation. Neglecting the source of
seasonality and focusing on its phenomenology is the approach used in the so-called
time series analysis. Nevertheless, seasonality is not the only component present in
time series, and it is not possible to focus on seasonality completely neglecting the
other components. Thus, the time series components which are taken into account
and the way in which they are investigated could vary depending on the purpose of

the analysis.
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14 CHAPTER 2. SEASONS AND SEASONALITY

In this section we will try to give a theoretical overview of the basic principles of
time series analysis, favoring the point of view that is usually held for the analysis
of climatic time series. The main focus in this part is the recognition of seasonal-
ity. Thus, we will prefer an approach focused on seasonality rather than on formal
completeness. This part is mainly inspired by [Hamilton, 1994] and [NIST, 2012],

which could be used as references for a complete treatment.

2.1.1 Basic definitions

Consider a time-series X of T real values generated by a stochastic process A:

X ={wy,29,...,24,...,07}, z €RF (2.1)

Assume each x; to be a particular realization of a generic probability density
function f;, which is determined by an undefined set of parameters v;: we will denote
the probability of getting z; by fi as fi(z¢|v).

Consider now an ensemble E of N time-series generated by the same process A:

E={x" X% . XV . XV} (2.2)

It’s convenient to rearrange data in a T'X N matrix D where each row represents

a time step and each column a time series:

D=|: . (2.3)

We can easily observe that if K > 1 then D is a three-dimensional tensor. Each
row of D is thus ruled by the same probability density function f;, and we can

summarize these functions in a column vector F':

fi(zi]n)

fr(zr|yr)



2.1. SEASONALITY ON TIME SERIES ANALYSIS

The simultaneous knowledge of all the functions f; and the parameters ~,; gives
the statistic of the time series generated by the process A, which is the goal of a
parametric approach. This allows to compute some useful indicators about the time

series, which could be arranged in column vectors:

e Expectation (or ensemble mean):

My = E[Xt] = /_OO ajtft(xt’%)dxt (2-5)

o0

Each row of F has its own expectation value, thus we can define the col-
umn vector M of these values, that will represent the ensemble mean at each

timestep:

M1
M=": (2.6)
KT
e Central moments:
ot = B = ) = [ (e ) fai ey (2.7)

As for M, thus we can define the column vector S* of the moment of each row
of F:

St=|: (2.8)

e Autocovariance sequence:

15



16 CHAPTER 2. SEASONS AND SEASONALITY

Pri—i = E[(Xp—pe) (Xomy— )] = /°° /oo' - /°° (zg—pue) (Be—1—pre—1) [ (2| ve) dey
(2.9)

The autocovariance is defined for each row and for each possible lag, and thus

the result could be summarized in a column vector R of length 7" T":

P1,1
P1,2

R= |pir (2.10)
P2,1

LPTT |

If we knew the explicit form of F', we would be able to perform a complete
analysis of our time series. In fact, the information contained in F' would allow us
to know the statistical behavior of the process A at each time step. In this scenario,
also seasonality would be described by the statistic.

The first problem is that when approaching the analysis of a time-series, the
a priori knowledge of both f; and ~; is most of the time unsatisfied. A statistical
approach could be supposing the shape of functions f; and then estimating the best
parameters ;. This would require the ensemble of realizations F. Here the second
problem raise: dealing with climatic data, especially when dealing with observations,
we usually only have one realization X and not the ensemble F.

These problems could be bypassed with the concepts of stationarity and ergod-
icity, which will be detailed in the next section. Briefly, we can assume that our
time series shows certain stability characteristics which allow us to treat a single

realization as an ensemble realization.

2.1.2 Stationarity and ergodicity

As said before, when the ensemble of realization of a process A is not available, the
way we have to statistically investigate the properties of a time series is suppose

that the time series itself could be treated as an ensemble realization. This is made



2.1. SEASONALITY ON TIME SERIES ANALYSIS

using the concept of stationarity, in different grades. As we will see with the formal
requirements, stationarity is an assumption. In fact, we assume that if we had an
ensemble realization, it would behave in a certain way.

A process is said to be strictly stationary if each time step shows the same

statistical behavior. Formally:

fa(zal|va) = fo(zelre) Voo, ze (2.11)

Which is equivalent to require F to be constant, and consequently M, S* and
R. This definition is too strong for most of the interesting time-series, and not
applicable to climate data. Furthermore, a time series which has, by definition,
no statistical difference between different timesteps, obviously loses the interesting
features we are looking for, such as seasonality.

There is a wider condition we can impose to time series, called Wide-Sense
Stationarity (WSS). A process is said to be WSS if:

1. For each time step the expectation value is constant:

M1 = fyg = p V1,2 (2.12)

2. The expectation value of the squared signal is finite:

El|lz?] < oo Vt (2.13)

3. The autocovariance sequence varies only in function of the lag:

Pas(t1,12) = pog(tl — 12,0) Vi1, 12 (2.14)

A WSS process shows a certain regularity between the statistical behaviour of
different timesteps. This regularity is wider than the one imposed by strictly sta-

tionarity since, for example, central moments could vary through different timesteps.

17



18 CHAPTER 2. SEASONS AND SEASONALITY

WSS allows to collapse the statistical indicator of the time series. M could be
collapsed in a single value, and R, being a function only of the lag, could be reduced
ina 2% 7T — 1 column vector. Since R is symmetric respect to [ = 0, it is possible to

consider only one side and redefine:

R=|": (2.15)
%0

The main advantage of strict stationarity and WSS relies in the fact that we
can consistently redefine the statistical indicators shown before (expectation, central
moments, and autocovariance) using the average on time dimension. Considering

our starting time series X we can define:

1 T
T= szt (2.16)
t=0
1 T
Tk —\k

= - -
T3 Z(mt —T) (24— — T) (2.18)

=0

) =

~+

Where the overbar indicates that the average is computed on time dimension
and not on ensemble realizations. A further step is ergodicity. Even if the operation
2.16, 2.19, and 2.18 are consistent, we cannot state that they are equivalent to
expectation, central moments, and autocovariance defined in 2.5, 2.7, and 2.9 on
the ensemble realizations. When it happens, the process is said to be ergodic. Such
as for stationarity, there are different grades of ergodicity. The most used in time
series analysis is ergodicity for the mean.

Formally, the process A is said to be ergodic for the mean if:

lim z=p (2.19)

T—+o00



2.1. SEASONALITY ON TIME SERIES ANALYSIS

i. e., if the mean on time dimension converges to the ensemble mean.

It worth note that in many applications ergodicity and stationarity turn out to
amount in the same requests, but they are different concepts, as detailed before.
While ergodicity is a sufficient condition for stationarity, a stationary process could
not be ergodic. Furthermore, it must be clear that stationarity and ergodicity are
most of the time assumptions, being used when the ensemble realization is not
available.

We wonder now if stationarity and ergodicity are concepts compatible with the
presence of seasonality. There is no a general answer to this question, since it de-
pends on how seasonality influence the statistical behavior of each timestep. Strict
stationarity is too strong for allowing seasonality, but we already stated that is too
strong for any interesting application. WSS could be compatible with seasonality if,
for example, seasonal patterns only influences central moments of each timestep’s
statistical distribution. This requirements is too strict, and we must take into ac-
count that seasonality in climate system could affect the expectation values too,
contrasting the requirement in equation 2.12.

Thus, for the evaluation of seasonality in Earth’s climate system we cannot
rely on statistical methods. The most used alternative is to rely on some heuristic
assumptions, dividing the time series in components and trying to detect them with
ad-hoc defined methods. These considerations will be discussed in the following
subsections.

Even if stationarity and ergodicy did not lead to usable results, this dissertation

will be useful in the following of this chapter.

2.1.3 Sampling

The data considered since now are by definition discrete in time. Even if the process
that generates them is time-continuous, a discretization process must be applied to
access the data. This process is called sampling and is performed using a sam-
pling interval At. So given a continuous signal x(t) the sampling process could be

formalized:

x; — x; = x(nAt) (2.20)

Where n € [1,7T] is the number of measurements. The sampling process de-

termines a loss of information and must be chosen carefully, according to the phe-
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20 CHAPTER 2. SEASONS AND SEASONALITY

nomenon which is under investigation. The choice of a sampling interval implies the

definition of a sampling frequency v, defined as:

1
At

v (2.21)

Here it must be noticed that the definition of the unit of measure of t is not
trivial, since it implies the assumption of a reference time unit which is a system
scale factor.

In this work we will assume ¢ €]0, 1[ such that v € I'™ where I denotes the inte-
ger numbers larger than one. This means that v describes the number of samplings
taken in a time unit. For simplicity we introduce now the parameters used in this
work: the reference time unit is 1 yr with a daily frequency sampling (At = 1/365),
thus v=365. This means that we will ignore processes that are characterized by

frequency higher than 2 days.

2.1.4 Time series components

As stated in previous subsections, in absence of the ensemble realization of the pro-
cess, seasonality in time series could not be evaluated relying on statistical methods.
Thus, we can try to divide the time series in its components and focus on seasonality.

Time series could be heuristically considered as formed by three components:
trends (77), cycles (C), and residuals (R). These components are usually modeled
combining them in additive or multiplicative ways. Here we consider the addictive

mode:

X=T+C+R (2.22)

A finest decomposition could be performed on cyclical components. Cycles could
include an oscillation with period inferior or equal to 1 yr (seasonality Se) and lower
frequencies components (Cy). It is not merely a matter of periodicity. Seasonal
cycles in climate system are usually more regular than other cyclical components.
In the same way, climatic time series usually shows variability at short time scales,
such as days or weeks, which could lead to rise of irregular periodicity too.

Determining threshold of regularity or periodicity for the division of periodical or
quasi-periodical cycles in seasonality or other components would requires additional

evaluations which exceed the purpose of this work.



2.2. DEFINITION OF SEASONS

Here we are trying to find the point of contact between the definitions of season-
ality and seasons. Meteorological seasons, in their common use, have a periodicity
of about 1 yr. Thus we will consider the cycles with period of about 1 yr as seasonal
components (Se), and we will incorporate the other periodicity or quasi-periodicity
into residuals (R). This results in the following division of time series into its com-

ponents:

X=T+Se+R (2.23)

Time series analysis makes use of different techniques in order to identify these
components, based on the definition of continuous functions which can represent
them. Assuming that we could chose the best one, we would be able to find the
seasonal pattern in our climatic time series. This pattern would be described by
a time-contiguous signal. Thus, this does not answer our main question, which is
why we can use meteorological seasons for the description of the seasonal pattern
in climate time series. At the light of what we stated in this section, we will try to

answer this question in the next section.

2.2 Definition of seasons

Briefly summarizing the results of the previous section: a pure statistical approach
for the recognition of seasonality is not applicable. Firstly, because most of the
time, when dealing with climate time series, we only have one realization and not
an ensemble. Furthermore, the intensity of seasonal patterns in climate time series
prevents us from assuming stationarity, in order to use statistical approaches with
only one realization. Thus, we stated that the best approach is to model season-
ality assuming an heuristic division of time series in components. In this sense,
seasonality should be modeled using a time-continuous signal. This is not helpful
for the definition of seasons, meant as the periods in which we divide the years for
describing seasonality.

As we stated in chapter 1, meteorological seasons are a powerful tool since they
describe what is the expected behavior in a determined period of the year. Thus, we
will try to combine the heuristic division performed in , with the ensemble approach.
As we will detail, using eqaution 2.23 we can obtain an ensemble of realizations
starting from a single realization, which statistical behavior highlights the seasonal

features.
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22 CHAPTER 2. SEASONS AND SEASONALITY

2.2.1 Work approach

Let’s consider a time series which is a single output of a stochastic process. We do not
have an ensemble of realizations, and we can not assume stationarity. Nevertheless,
we can consider each year as a single output of the process. If the time series, being
daily the frequency sampling, consists of T years 365 values, now we have a matrix
of T'years realizations of the process A, each of one of length 365. This matrix is
formally consistent with D (equation 2.3), but substantially different if we consider
that the components defined in section 2.1.4 now vary through each realization.
In fact, each row now has a time-dependent statistic. That is to say, the first
realization (i.e., the first year) is not necessary ruled by the same distribution on the
n'" realization (i.e., the n' year). Basing on the simplified time series components
division performed in equation 2.23 we can note that the trend could modify these
distributions. If we remove the trend, as we will see in chapter Methods, we can
consider our representation formally more reliable.

It is easiest to get this point considering an ideal climatic dataset. Climatic data
could be presented in spatio-temporal matrices. Consider a homogeneous space-time
distributed dataset, where each space coordinate indicates a grid point, and a defined
number of atmospheric variables. Assuming that there are M grid points and H

variables, the size of the matrix is:

(T'years % 365) X (M « H) (2.24)

If we consider each year as a different realization of the process, we obtain a

tensor with the following size:

(365) X (T year) X (M x H) (2.25)

We can represent the data in the matrix D, remembering that each x € RM*H:

Di=|: (2:26)
37:1’,65 S $§65

It should be now clear that the current data representation (after having removed

eventual trends) allows us to focus only on seasonality and residuals components.
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With this representation, each rows contains the climatic behavior for each day on
different years, grid points and variables.

This representation is now compatible with our purpose of defining the seasons.
As we will detail in the next subsection, finding meteorological seasons is equivalent

to grouping the rows in D basing on their distributions.

2.2.2 How to define the seasons

Now we can formalize our work hypothesis for the division in meteorological sea-
sons. At the light of what we said in the previous sections, we can assume that
seasonality in climate system components shows an emergent behavior which leads
to the identification of periods with similar characteristics, i. e. the seasons. We
will verify the goodness of this hypothesis at the end of this dissertation.

Formally, this could be seen as a mapping from a time continuous signal to a
discrete number of states. Consider the matrix Dy defined in the previous section
(equation 2.26). Consider taking just a single realization (i.e., a single year) X,
remembering that each z! has M x H dimensions. Assume that the system has a

finite number Ny of different and physically significant states s:

Sy ={s, 1 <s<N,} (2.27)

We can thus define a state sequence S; which contains the states s! of each z,
mapped by a function dz. Hence the mapping of matrix D; results in matrix Dy

which is a matrix of the states:

51 51
Dy = : : (2.28)
5§65 e 5%65

This mapping, at the light of what we said before, is performed on the base of
seasonal cycle and residual component of each row.

Now the recognition of seasons lies in the definition of the mapping function.
As we will see in the next chapter, the aim of the machine learning approach is
to implicitly recognize the mapping function which best catches this path without

human supervision, and in this way defines the meteorological seasons.
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Chapter 3

Data

There is currently a large number of climate datasets available within the climate
community, developed and distributed for a wide range of uses. They differ for
several characteristics, such as the space and time coverage and resolution, and the
variables which they provide. In this work we make use of two kinds of products,
namely one climate reanalysis and climate models providing historical and future
simulations. This chapter presents the used datasets — the ECMWF ERADS reanal-
ysis [Hersbach et al., 2020] (section 3.1) and the Earth System Model EC-Earth3
[Doscher et al., 2022] (section 3.2), along with the physical variables considered in

this study, the total precipitation and surface air temperature.

3.1 Climate reanalysis: ERAb5

3.1.1 ERAS5

ERADJ is the fifth generation climate reanalysis developed and distributed by the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWE). Climate reanalyses
are datasets that combine, through data assimilation techniques, historical obser-
vations with the output of numerical models to provide a detailed gridded picture
of the past and present state of the climate system on a global scale at the sur-
face and for all levels of the atmosphere. Reanalysis data have been widely applied
in atmospheric sciences, for example, to assess the impact of changes in observing
systems or to compute state-of-the-art climatologies [Hersbach et al., 2020]. In this
work, ERAD5 is used as a ground-truth dataset, that is to say the dataset which
contains the truth and is therefore used to evaluate the performance of the built

methodology.
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3.1.2 Reanalyses vs observations

What makes a climate reanalysis system appreciated and reliable is the fact that it
is able to assimilate observations into one physical-dynamical model. Observations
would be the best possible source of information to understand the current and
recent past climate, however they are characterised by a number of drawbacks and

weak points, including:

e their spatial and temporal domain: observation datasets provide information
only at specific times and locations, corresponding to the station’s operative
periods and locations. In-situ stations are sparse and unevenly distributed
over the globe (e.g. valleys vs mountains; land areas vs sea). More regular
observation datasets, such as the ones obtained from satellite data, only cover

the more recent period (typically the last 40 years, from 1979 on).

e their consistency: observational data, being obtained by different sources, may
have some bias between each other and therefore they have to be verified and

homogenized before their use.

e their accessibility: there is a large number of observation datasets available,

but not all of them are easily accessible.

A climatic reanalysis can overcome these issues by processing the observation
data within a physical model, creating homogeneous space-time grids of standardized
and verified data. ERAJ incorporates data from a great number of observation
sources which are assimilated, processed with the physical model IFS Cy41r2, and
then stored into hourly fields. More information about the ERA5 model workflow
and settings could be found in the reference paper [Hersbach et al., 2020].

3.1.3 ERAS5 data

In this work we will use the two following ERAb variables: “total precipitation” and
“surface air temperature”. Even if ERA5 data are available from 1950, we selected
only the period from 1979 to 2020, as the data in this period are considered more
reliable as they assimilate also satellite observations, which are available starting
1979.

ERAS has a spatial resolution of 0.25°x0.25° (about 30 Km). Both variables are
used in their daily mean temporal aggregation.

ERAS dataset is distributed through the Copernicus Climate Data Store (CDS)
portal [ ECMWF, 2023].
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3.2 Climate simulations: EC-Earth3

3.2.1 EC-Earth3

EC-Earth3 is a Earth System Model (ESM). ESMs are a class of numerical models
which aim to describe the behavior of Earth’s climate system. ESMs are the upgrade
of Global Climate Models (GCMs). GCMs have been designed as a combination of
coupled models describing the atmosphere, sea ice, ocean, and land. ESMs also
include components for vegetation and carbon cycle in order to perform simulations
more representative of the behavior of the entire Earth’s climate system. Nowadays,
ECMs are our best tool to understand the Earth’s climate system and its possible
future evolution. In this work we will use the basic configuration of EC-Earth3,
which includes the components describing atmosphere, sea ice, ocean, and land.
EC-Earth3 is developed on the concept of “seamless prediction”. That is to
say that a seasonal weather forecast model, which simulates atmospheric dynamics
and thermodynamics over short time scales, is joined with a climate model, which
simulates the interactions between the atmosphere, ocean, land surface, and ice over

longer time scales.

The models used for each components are [Doscher et al., 2022]:

e [FSr4, developed by ECMWF for the atmosphere module, with a horizontal
resolution of about 80 km and 91 vertical levels. It includes the land model
HTESSEL.

e NEMO 3.6, developed by the Nucleus for European Modelling of the Ocean,
for Oceans, with an average horizontal resolution of 1° x 1° and 75 vertical

levels.
e LIM3 for sea ice model developed by Louvain la Neuve.

These modules are coupled through The OASIS3-MCT coupler version 3.0. For
more details on the setup of EC-Eart3 refer to [Ddscher et al., 2022].

In this work we make use of the simulations of the EC-Earth3 model performed
for contribution to the Coupled Model Intercomparison Project Phase 6 (CMIP6).
CMIP6 collects the results of over 100 models from more than 50 modeling centers
around the world. In the next subsections we will give a brief overview of the design
of CMIP6 experiments.
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3.2.2 CMIP6

The Coupled Model Intercomparison Project (CMIP) is now one of the foundational
elements of climate sciences. CMIP started over 20 years ago as a comparison of the
first global coupled climate models (numerical physical models which simulate dif-
ferent components of the Earth system and their interaction) and now has reached
its 6th phase (CMIP6). CMIP gives the baseline for the model settings and collects
and distributes the outputs obtained by models developed by more than 50 mod-
eling centers around the world. Due to the increase of the scientific questions that
these models try to answer, along with the increase of information that these mod-
els could give, CMIP6 has reorganized its structure with respect to the precedent
phase (CMIP5). Now three major components could be identified, as detailed by
[Eyring et al., 2016]:

e the Diagnostic, Evaluation and Characterization of Klima (DECK) experi-
ments (klima is Greek for “climate”), and CMIP historical simulations. DECK
includes four baselines simulations: 1) an historical Atmospheric Model Inter-
comparison Project (amip) simulation, 2) a pre-industrial control simulation
(piControl), 3) a simulation forced by an abrupt quadrupling of CO2 (abrupt
4xC0Oq) and 4) a simulation forced by a 1 % yr~! COy increase (1pctCOy).
The historical simulation is designed to cover the recent past period (1850-
2014) (section 3.2.2). These simulations are essential because they provide a

standardized baseline for model comparison.

e The creation of a common infrastructure with standardized documentation

which facilitates the distribution of the models results.

e The reorganization of the experiment runned for the project, called CMIPG6-
Endorsed Model Intercomparison Projects (Endorsed MIPs), which led to the

creation of the guidelines for 23 specific research projects.

In this work we will make use of the historical simulation and of the Scenario
Model Intercomparison Project (Scenario MIP), which is the Endorsed MIP designed
to evaluate the response of climate models to different future emissions and socio

economics scenarios.

3.2.3 Historical and future scenarios simulations

The historical experiment is a simulation of the recent past (1850-2014), in which
changing conditions are imposed consistently with observations. The guidelines for

the execution of the experiments requires at least one ensemble member and the
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use of a Atmosphere-Ocean coupled general circulation model. For all the forcing
constraints, proper datasets are indicated by CMIP6. For a complete reference see
[Documentation, 2018]. The rationale behind historical experiment is to evaluate
the models performance against present climate and observed past climate changes.

The Scenario Model Intercomparison Project (Scenario MIP) [O’Neill et al., 2016]
is the primary activity in CMIP6 which provides climate projections based on al-
ternative scenarios of future emissions and land use changes and has been designed
with eight alternative 21st century scenarios. These scenarios describe the possi-
ble future developments of anthropogenic drivers of climate change. Until CMIP5
these scenarios consisted of Representative Concentration Pathways (RCPs), a set
of four pathways of land use and emission of air pollutants and greenhouse gasses. In
CMIP6, these pathways have been integrated with the Shared Socioeconomic Path-
ways (SSPs), which modelize socioeconomic development. The idea behind this
choice is to focus not only on the physical climate system, but also on the climate
impacts on societies. RCPs are named after the radiative forcing (the balance alter-
ation between incoming and outcoming energy in the Earth system) they produce in
2100, measured in W/m~2. CMIPG6 incorporates seven RCPs: 1.9, 2.6, 3.4, 4.5, 6.0,
7.0 and 8.5. SSPs are organized into 5 levels: SSP1 and SSP5 envision optimistic
trends for human development but, while SSP1 assumes a shift toward sustainable
practices, in SSP5 there is an energy intensive, fossil based economy. SSPs 3 and
4 envision more pessimistic development trends, with increasing inequalities. SSP2
prospect is a central way in which trends continue their historical patterns. Figure
3.1 summarizes the SSP-RCP scenarios used in CMIP6.
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Figure 3.1: SSP-RCP scenario matrix illustrating ScenarioMIP simulations. Each cell in the
matrix indicates a combination of socioeconomic development pathway (i.e., an SSP) and climate
outcome based on a particular forcing pathway (i.e., an RCP). Dark blue cells indicate scenarios
that will serve as the basis for climate model projections in Tier 1 of ScenarioMIP; light blue
cells indicate scenarios in Tier 2. White cells indicate scenarios for which climate information
is intended to come from the SSP scenario to be simulated for that row. CMIP5 RCPs, which
were developed from previous socioeconomic scenarios rather than SSPs, are shown for comparison
(Source [O’Neill et al., 2016]).

3.2.4 Enseble members

The simulations detailed in the previous section are performed by each model partic-
ipating in CMIP6. The result is the so-called “multi-model ensemble”. The analysis
of the multi-model ensemble is primarily used to explore the spectrum of possible
evolution of Earth’s climate system under the conditions imposed in the specific
experiment.

Another approach carried in CMIPG6 is the so-called “multi-member ensemble”.
Each model performs the simulations slightly varying the experiment setup to obtain
a spectrum of results for each experiment. Taking as example EC-Earth3 models,
the historical simulation is carried out several times changing the setup, obtaining
different historical simulations which are the multi-member ensemble of EC-Earth3
model for historical period. The same approach is used in the ScenarioMIP ex-
periments and in the other EndorsedMIPs. The rationale behind multi-member
ensembles is to use this spectrum for the evaluation of the model’s sensitivity to a
slight change in the setup.

In CMIP6, each member of the multi-member ensemble is identified with an
univocal code, called “VARIANT-ID”. VARIANT-ID are encoded in the form

"[7ide)t[tide |P[Didz) [ fidz), Where each index is an integer (> 1) and corresponds to
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[Taylor et al., 2018]:

e 1q.: the realization index, used for distinguishing among members of an en-
semble of simulations that differ only in their initial conditions. Each future
scenario simulation should be assigned the same realization integer as the his-

torical run from which it was initiated.

e i;4,: the initialization index, used either to distinguish between different algo-
rithms used to impose initial conditions on a forecast or to distinguish between

different observational datasets used to initialize a forecast.

® Di4: the physics index used for identifying the physics version used by the

model.

e fiq.: the forcing index, used to distinguish runs with different variants of

forcing applied.

Normally, for the multi-model ensemble, only an ensemble member for each model

is used, usually the rlilp1fl member.

3.2.5 EC-Earth3 specifics

As for ERA5, we will use the “total precipitation” and “surface air temperature”
variables. We will make use of the Historical simulation (1850-2014) and of the
future projection under the SSP5-8.5 from ScenarioMIP (2015-2100). The histor-
ical simulation partially overlaps with ERA5 (1979-220) and will be used for the
comparison between the two datasets, such as for the evaluation in the past of the
methodology we developed.

In this work, dealing with only one model (EC-Earth3), we will use a multi-
member ensemble. We selected the VARIANT-ID with both total precipitation and
surface air temperature available for both historical simulation and future projec-
tion under SSP5-8.5 scenario. These requirements lead to the identification of three
ensemble members (rlilplfl, r13ilplfl, r15ilplfl). EC-Earth3 has a spatial reso-
lution of 0.70°x0.70° (about 80 Km). Both variables are used in their daily mean
temporal aggregation.

EC-Earth3 dataset, such as the whole CMIPG6, is available on the portal of the
Earth System Grid Federation (ESGF) [ESGF, 2023].
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Chapter 4

Methods

This chapter aims to introduce the development of a method to objectively identify
seasons in climate data, aiming at being flexible and highly adaptable to different
case studies. Thus, the choice of a data driven approach appears to be the most
obvious consequence. In the last 30 years data driven methods, commonly defined
as "machine learning”, have been the subject of great interest from the scientific
community. The continuously increasing amount of available data has given rise to
the need of methods which can extract and condense relevant information with as
little human interaction as possible. In this direction machine learning has given
multiple proofs of being able to achieve this task. Climate sciences have faced a
similar issue, given the enormous increase of data availability in the last decades,

and machine learning is yielding promising results in this field too.

This chapter presents the methodology developed in this work, which has been
built in the light of being adaptable to the most diverse cases. Section 4.1 contains
an overview on machine learning methods and their history, with a special focus to
those concerning climate sciences. In sections 4.3 and 4.4 are respectively presented

the method adopted for the seasons definition, and the one for the seasons projection.

4.1 Machine learning

Note to the reader: an exhaustive review of machine learning history and methods
goes beyond the goal of the current thesis. The purpose of this section is to point out

the main ideas and evolution of the methods which inspires this work.
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4.1.1 History

The term Machine Learning (ML) refers to a wide class of algorithms and statistical
models which aim to perform specific tasks without being explicitly programmed for
them. The origin of ML can be placed between the end of the 50s and the beginning
of the 60s of the XX century, when Rosenblatt performed the first mathematical
studies about the perceptron [Rosenblatt, 1959], with the task of making a machine
recognize some hand-written numbers. The perceptron is a binary classifier which

maps input values in output classes with:

f(z) = x(< w,z > +b) (4.1)

Where z is the input data, w the so-called weights, b the bias and <, > denotes
the internal product. In Rosenblatt formulation was a threshold function which
gave 1 if < w,x > is bigger than b and 0 otherwise. Both the parameters w and b
are optimized in the training process, where they are randomly initialized and then
corrected on the prediction they give on the data. In this sense, a real breakpoint in
ML history was the proof given by Novikoff of the learning algorithm convergence
[Novikoff, 1962]. In 1962 Widrow created MADELINE, a perceptron with an addi-
tional layer between the input and the output called hidden layer, giving birth to
the first multilayer neural network [Widrow and Stearns, 1990].

Formally, the training process of a perceptron could be seen as the identifi-
cation of a hyperplane in the phase space which properly divides the features of
the data based on their belonging class. This problem was firstly approached
deterministically, since Tsypkin in 1968 showed the power of stochastic methods
[Tsypkin, 1968].Taking as reference the formula 4.1 for the perceptron, he intro-
duced a performance index J(w,x) as the expectation value FE, of a generical cost
function Q(w,z), called loss function,which quantifies how the current weights w

allows a correct identification of the real belonging class of the data x:

J(x) = E.Q(w, x) (4.2)

Thus, the goal of the learning process is to minimize J(w,x), and Tsypkin

himself proposed a learning algorithm known as Stochastic Gradient Descent (SGD):

wln] = win — 1] = [n]VQ(x[n], wln — 1]) (4.3)
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Where v[n| represents the rate at which the weights w are updated.

In this period also the first clustering algorithms were developed, such as K-
means clustering [Lloyd, 1957] and Hierarchical clustering [Ward Jr and Hooker, 1963],
with the purpose of grouping data in clusters based on their characteristics. In
1969 a book by Minsky and Papert showed some limitations of the perceptron
[Minsky and Papert, 1969], driving the beginning of the so-called 1st ML Winter
in which development of ML was quite limited. A new breakthrough in ML ad-
vances was the introduction of the back-propagation algorithm, which updates the
weight of each layer starting from the last one with a chain rule, instead of updating
all of them at the same time [Rumelhart et al., 1986]. Despite a new period without
remarkable achievement (commonly referred as the ML 2nd winter), since the 1990s
ML has experienced a new boom. Three pushing factors could be recognized to

explain this new phase:

1. The continuously increasing amount of data, which makes the extrapolation

of information from them more a necessity than a scientific curiosity.
2. The decrease in parallel computing and memory cost.

3. The development of new machine learning algorithms.

4.1.2 Most used machine learning techniques

ML is a wide and multidisciplinary sector, and relies on a great variety of algorithms,
which are applied depending on the specific task. A survey in these methods could
recognize three main categories: supervised learning, unsupervised learning, and

reinforcement learning [Mahesh, 2018|.

e Supervised learning: the purpose of supervised learning is to instruct a
computer system to predict output values of a system based on a set of input
values. This prediction could be either of the class to which the data belongs
(classification), or one or more continuous variables (regression). Thus, a
supervised algorithm needs to be trained on a labeled dataset, i.e., a dataset
where each input data is associated to its belonging class or output value, and

can only be used on other data once trained on this initial labeled dataset.

e Unsupervised learning: unsupervised learning aims to extrapolate rela-
tionships from complex data without relying on labeled data. This can be
achieved by grouping data according to their characteristics (clustering), or
by determining the data distribution (density estimation), or even reducing

the dimensionality of data (Principal Components Analysis).
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¢ Reinforcement learning: reinforcement learning is the ML technique which
better reproduces the human learning process. Here the algorithm learns the
best behavior by a sequence of states and actions with a system of reward
based on the choices taken. Reinforcement learning is widely used in games

and other fields that involve human interaction.

A cross-sectional area to these categories is the Neural Networks (NNs) field. NN,
also called Artificial Neural Networks (ANNs), are computer systems which try to
emulate the simplified model of a biological neural network. The constituent unit
of a NN are the artificial neurons, which are interconnected nodes organized in
layers. The shape of these layers and the type of connections (i.e., the architecture
of the NN) could vary considerably depending on the purpose for which it is being
implemented, and a comprehensive review of all their applications is beyond the
scope of the current thesis. Nevertheless, a common base structure in NNs is formed
from three layers: an input layer, a hidden layer, and an output layer. Due to the
presence of multiple layers of representation, neural networks are an example of the
so-called Deep Learning. NNs have been proved to be well performing in a wide class
of applications, especially when dealing with nonlinear problems. Furthermore, by
manipulating their architecture, they could be used for different purposes such as

classification, regression, dimensionality reduction and reinforcement learning.

4.1.3 Machine learning in climate sciences

As many other sectors, climate sciences have experienced an extraordinary increase
in data availability (Figure 4.1). Consequently, it can be considered as being an
example of the so-called big data, defined by their ‘four Vs’: volume, velocity, vari-
ety, and veracity (Figure 4.2). These features make the data hard to manage. On
the other hand, it is now clear that addressing climate changes involves adaptations
(preparing for the inevitable consequences), and this data is the core of the strategies
that can be implemented. This is forcing the scientific community to face the prob-
lem of climate data diffusion and interpretation, in the light that the information
that these data contain must be transposed in an easily accessible form for policy
makers [Overpeck et al., 2011].

For these reasons, machine learning algorithms are being used with increasing
frequency in the field of climate data and sometimes they can provide better results
than "more” classical statistics models. Nevertheless, a massive implementation of
ML on Earth system data is still lacking, and the data analyst community is trying
to give itself guidelines to fill this gap. Some of the fields in which ML is giving
better results are [Reichstein et al., 2019]:
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Figure 4.2: The 4 Vs of earth system data (left) and the main features that should came
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¢ Global modeling: ML is finding its application supporting numerical simu-
lations as those provided by Global Circulation Models: a new sector of ML is
emerging aiming at developing algorithms able to learn the behavior of dynam-
ical systems, such as the earth system, making use of different techniques. The
most used methods are Physics-Informed Neural Networks (PINNs) and Neu-
ral Ordinary Differential Equations (Neural ODEs). PINNs are NNs designed
to include the governing equations and constraints that describe the system
being modeled, making the network able to learn the underlying physics of
the system and make predictions that are consistent with the laws of physics
[Cai et al., 2021]. PINNs are particularly useful to speed up and optimize
GCMs execution. Neural ODEs are a type of neural network architecture that
allows for the modeling of dynamic systems as a continuous-time differential
equation. In a Neural ODE, the input is a set of initial conditions for the sys-
tem, and the output is the state of the system at a future time. The network
learns a set of continuous-time differential equations that describe the evolu-
tion of the system. This means that Neural ODEs can be used to extrapolate
the behavior of a system beyond the range of available data [Chen et al., 2018].
This is particularly useful for fields that have a large availability of data and

a lack of reliable physical relationship (for example ice sheets dynamics).

e Downscaling: for the analysis of future scenarios, most of the time it is neces-
sary to transpose the output global fields obtained with GCMs into projection
over specified locations. This operation, called downscaling, is performed with
a great variety of dynamical and statistical models. Dynamical downscaling
is performed using Regional Climate Models (RCMs) which make use of the
outputs of GCMs as boundary conditions. ML could improve the performance
of these models with the methods explained above. Statistical downscaling is
performed establishing the relationship between GCMs outputs and variable
behavior at local scale. Here, ML has proved to give reliable results with the
application of recurrent and convolutional neural networks, that is to say neu-
ral networks which can take into account the space and time features of the
dataset [Reichstein et al., 2019].

e Clustering: notable results have also been reached with the application of
clustering algorithms to climate data, with a wide range of goals. Clustering
can be used to group together similar regions or time periods based on climate
variables, such as temperature or precipitation. This can help identify regions
that are particularly vulnerable to climate change, or identify trends and pat-

terns that may be related to global climate phenomena. Clustering, being an



4.2. DATA PREPROCESSING

unsupervised method, allows to overcome some classicals methods which rely
on heuristic decision rules. Many studies have attempted to perform climate
classification from either a global and regional point of view, querying the num-
ber and the nature of the variables that should be included in such analysis.
Also, clustering techniques have been applied to improve the computation of
some climate indexes, with a better recognition of the spatio-temporal domain
in which they are defined [Steinbach et al., 2006].

4.2 Data preprocessing

Before proceeding with the discussion of the methods used in this work for the
division into meteorological seasons, we describe the preprocessing of the data, i.e,
the operations which make the datasets suitable for our analysis.

Climate datasets, such as ERA5 and Ec-Earth3, could be visualized as five-
dimensional tensors. The first dimension represents the physical variables (in our
case, surface air temperature and total precipitation), the second, third and fourth
dimensions represent the spatial coordinates (respectively, longitude, latitude and
vertical level), while the fifth dimension represents the time coordinate. The vari-
ables used in this work, surface air temperature and total precipitation, are dis-
tributed on single levels. This means that they do not need the vertical level coor-
dinate, since they are evaluated only near the ground (surface air temperature) or
on the ground (total precipitation). Thus, the datasets used in this work could be
visualized in four-dimensional tensors where each dimensions represents respectively
the physical variables, the longitude coordinates, the latitude coordinates, and the

time coordinates.

4.2.1 Data remapping

For the application of the methods we will describe, it is necessary that the data
tensors we will use (one for ERA5 and one for EC-Earth3) share the same shape.
As detailed in chapter Data, for both datasets we will use surface air temperature
and total precipitation in their daily mean time aggregation. Thus, the first and the
fourth dimensions are consistent. On the other hand, the space coordinates are not
consistent since ERA5 has an horizontal resolution of 0.25° X 0.25° and EC-Earth3
has an horizontal resolution of 0.70° X 0.70°. Thus, we must remap the two tensors
in the same horizontal grid.

In this work we decided to remap the ERAS dataset in the EC-Earth3 grid. That

is to say, we standardized both datasets on the coarsest spatial grid. Remapping on
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the finest grid (tecnically called downscaling) is a legit operation as well, but would
require more caution and the application of specifics methods, since it implies gen-
erating information at a resolution which is not the one of the original datasets. We
remapped ERA5 on EC-Eart3 grid using the conservative interpolation. Formally,

any value obtained with interpolation could be written in the form:

T = Z fowa (44)

Where f is the value in the interpolated field, o tags the elements f in the
original field that contribute to interpolation, and w are the interpolation weights.
In conservative interpolation, o tags the original grid cell which overlap with the
resulting grid cell, and w is the ratio of the area shared by the original and the
resulting grid cells (ref)(Fig 4.3).

conservative

Figure 4.3: Calculation of conservative interpolation weights w for a original grid cell
(dashed lines). Violet lines represent the area covered by the resulting grid cell. The weight
associated with the resulting cell is the ratio of the shaded area over the original cell area. (Source
of image: [Pletzer and Hayek, 2018])

Conservative interpolation is particularly indicated for the total precipitation
field, since it allows to conserve the spatial total amount of precipitation. That is
to say, if we select an area in the original field and the same area in the interpolated

field, the total amount of precipitation is the same.



4.2. DATA PREPROCESSING

4.2.2 Moving averages

The second operation performed in the preprocessing phase relies on some heuristic
considerations. Climate time series are subjected to variability at high frequen-
cies, caused by the complex mutual interactions between the components of Earth’s
climate system. Relying on the simplified recognition we made of time series com-
ponent in chapter Seasons and Seasonality, we can include this variability in the
residual part. Since our purpose is to recognize the seasonal patterns, we assumed
that this variability could lead to results that are more difficult to interpret. As we
will see in section 4.4, a part of our methodology will be focused on recognizing the
the season to which each day belongs. Thus we can suppose that a high variability

between days could comport high variability in the results.

We tried to reduce this variability applying a moving average fi,,0, to the original
data. The moving average is a commonly used operator for the empirical reduction

of high frequencies variability in time series analysis. Given a time series X =

{z1, ..., zy }, the moving average is computed for each value z,, as:
1 n+(k/2)
o] = 7 | Yoo (4.5)
i=n—(k/2)

Where k is the amplitude of the so-called window of the moving average.

Firstly, we applied the moving average on time dimension for each variable and
grid point, with a window of 30 days. Then, in order to strength more the seasonal
signal, we applyied the moving average through year for each ordinal day of the
year, with a window of 30 yr. That is to say, considering for example the January

15t of each year, we computed the moving average through January 1s.

In this way, each day in our datasets now contains information of the previous
and following 15 days and yr. Furthermore, both intra-annual variability and inter-

annual variability have been empirically reduced.

Since we computed moving average only on complete windows, this operation
removes the firsts and lasts 15 days and yr in the datasets. It’s worth noting that
this operation is not necessary and has been performed only to obtain more clear

ad interpretable results.
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4.3 Clustering: a Radially Constrained method

The main goal we want to achieve is to build a method for the definition of mete-
orological seasons. In light of the previous section, unsupervised learning has been
identified as the most suitable choice since it allows us to extract information from
the data without any a-priori assumption. More specifically, grouping climate data
into seasons seems to be a task suitable for clustering. Due to their extensive use
in many different applications, a wide number of clustering algorithms have been
developed. Nevertheless, all of them share the same purpose, which is to group the
input in order to [Xu and Wunsch, 2015]:

e Maximize similarity between items in the same cluster.
e Maximize the differences between items in different clusters.

e Perform the previous operations based on a metric which is descriptive of the

dataset and fits for the purpose of clustering.

The standard procedure in the development of a clustering method consists of
[Xu and Wunsch, 2015]:

e Extract the most relevant feature from the dataset according to the purpose
of the work.

e Design the algorithm in order to catch these features in a proper way.
e Evaluate the performance of the algorithm.
e Explain the obtained results.

In the rest of this section, we will follow this workflow.

4.3.1 Features extraction

The theoretical basis of the seasonal feature extraction from the dataset is detailed
in chapter two, and below is reported the operative process. The input data consists
of a four-dimensional matrix from a gridded dataset (with shape longitude pts X
latitude pts X time steps X variables) where time steps=365*years being daily the
sampling frequency. Data are reshaped in a two-dimensional matrix (365 X (years
* latitude pts * longitude pts * variables)), to obtain a representation of data where
each day is an item (i.e. the object that will be assigned to a cluster) and has as

features the values each variable had in this day for each year and each grid point.
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Figure 4.4: Schematic of data reshaping: n= longitude points, m = latitude points, t = time
steps, y = years, v = variables)

In order that different dimensionalities and variance do not affect our detection,
the features used for the clustering must be scaled in order to be comparable. Even-
tual inter-year trends and differences in space and physical variables absolute value
may force the algorithm to perform the cluster based on information that is not rel-
evant to the seasonal cycle. Therefore, the features are scaled with standardization,

(or z-score normalization), so for each column X; in the matrix obtained in Figure
(4.4):

X; — p[Xj]

T olx)] (46)

Where g is the mean and o the standard deviation. The data representation

obtained is used for the clustering.

4.3.2 Algorithm design

In this work we used an algorithm inspired by the paper Defining climatological
seasons using radially constrained clustering [Cannon, 2005]. Cannon proposed an
algorithm which could be placed in the class of the clustering algorithm based on

partition. Such methods aim to perform a classification of the data into a set of
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disjoint clusters, based on a specific metric, in order to reach the purpose introduced
at the beginning of this chapter [Xu and Wunsch, 2015]. In this way, the result of
the clustering provides both the grouped data and a statistic performed on the
partitions obtained on the features space. A widely known algorithm from this class
is the k-mean which defines the partitions based on the means of the values of the
item contained in them (the so-called cluster centroids). The main workflow for this

class of clustering algorithm could be synthetized as done by [Xu and Wunsch, 2015]:
e Generate random centroids,
e Compute the metric,
e Update centroids with a defined method,
e Repeat the previous step until the metric converges.

The more evident problem in the application of these kinds of algorithms to our
case is the management of time dimension. The definition of meteorological seasons
implies that the resulting clusters are time-contiguous, but our dataset does not
contain any explicit information about the time location (i.e. the day of the year)
of each item. A possible solution could be achieved by introducing one or more
fictitious features (for example, adding a dimension which expresses the day of the
year), but we discarded this option to avoid improper conditioning of the problem
that would artificially drive the cluster solution. The second problem, still related
to time dimension, is that the periodicity of the dataset, i.e. that contiguity must be
respected on the boundaries of the dataset, so that the last element (corresponding
to December the 31%) is contiguous to the first one (January the 1°). In other
words, the cyclicity of the seasons must be respected.

Radially constrained clustering algorithm allows to overcome these problems,
forcing the clusters to be time contiguous and assuming the correct periodicity.
Practically, this is achieved by defining - instead of the centroids as done by k-
means - the time breakpoints which divide the clusters.

To provide a more concrete example, please consider the dataset obtained in
Figure 4.4 made by 365 samples of D dimension z¢ where ¢t = 1,..., N represent the
time and d = 1, ..., D the dimension, where D = nxm*y=*v. Data must be ordered
over time, which means that xi and x;,; are time contiguous. Furthermore, data
must be periodical, so contiguity must be respected also for x3¢; and z;. It must be
noticed that this continuity is not strictly respected, since for each column the first
and the last element are not contiguous. Nevertheless, for each variable and grid
point, each column is contiguous to the following one. We can thus suppose that

contiguity is broadly respected if the number of years is large enough to absorb the
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information at boundaries. We set a limit of 30 years, which is the commonly used
time window for climate analysis. The aim is to determine M clusters by defining
M temporal breakpoints b, with & = 1,..., M. The goal of the algorithm is to
minimize the Within Sum of Squares (WSS):

wSS=3 > > (al— )’ (4.7)

This metric, which is an euclidean distance. has been chosen as it is the same
proposed by Cannon. Furthermore, euclidean distance is the most used metric in
clustering algorithms. A future development of this work could consider a systematic
comparison between different metrics. The algorithm proposed by Cannon does not
have an implementation, so part of this work consisted of the practical realization

of it. The core of the algorithm consists of the following steps:

1. Starting breakpoints are randomly generated and are bound to be equally time

spaced.
2. WSS is computed.

3. Breakpoints are updated, each of them adding a random integer number wu; €
U(—L,+L).

4. WSS is computed again, if smaller than WSS of previous step, new breakpoints

are accepted, otherwise breakpoints are downgraded to the previous version.

5. Steps 3 and 4 are repeated until WSS converges to its minimum.
To improve the algorithm, the following optional are added:

1. A scheduler for update rate, which scales down L if the metrics are getting

smaller at a very slow pace.

2. A constraint on season length: if an iteration violates it, the previous break-

points are restored.

3. An ensemble method, which performs the clustering several times with differ-

ent starting breakpoints and then keeps the best results according to WSS.

As for K-Means, this algorithm has a weak point in the definition of M, the
number of clusters, which in our case correspond to the number of seasons. There
is not a general and objective way to define this hyperparameter, but some criteria
which can be used to evaluate the goodness of a certain choice. The following

subsection contains the criteria chosen in this work.
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4.3.3 Evaluation metrics

The evaluation metrics in this work have a triple goal:

1. Evaluate the reliability of the clustering algorithm,

2. Evaluate the best number of clusters to be used to divide the dataset (i.e. the

best number of season)

3. Give an answer on the work hypothesis we made in chapter 2, i.e. if the

clustering approach is suitable for the seasonal division.

The elbow method is a qualitative way to evaluate the optimal number of clusters
in a dataset, based on a plot called "elbow graph”. The clustering is performed
with a various number of clusters, and then for each run the WSS at convergence
is plotted. Ideally, the WSS decreases when the number of clusters increases, and
the rate of this decrease is called "gain”. The ideal number of clusters is chosen as
the one after which the gain decreases and is recognizable in the plot due to the
characteristic elbow shape [Yuan and Yang, 2019]. This method, albeit qualitative,
is commonly used for the evaluation of the most proper number of clusters. On the
other hand, the silhouette score is defined to compare the similarity between data in
the same clusters with differences between data in different clusters. The silhoutte

coefficient is defined, for each element xi as:

bi—ai
S; =

max{b;, a;} (48)

Where ai is the average distance between xi and the other element in the same
cluster, and bi the average distance between xi and the elements in the other clusters.
This coefficient is in the range [-1,1] and approaches 1 when there is a close rela-
tionship between the object and the assigned cluster [Yuan and Yang, 2019]. The
silhouette score is obtained averaging that coefficient over all the data, and tested
along a various number of clusters. Thus, the optimal number of clusters is the one
which maximizes the silhouette score. This method is also used for the evaluation

of the algorithm: low values indicate a general bad performance .

4.3.4 Results interpretations

The radially constrained clustering algorithm gives M temporal contiguous clusters,

where M is the optimal number defined on the criteria exposed in subsection 4.3.3.
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Being the dataset daily, this means that each day is assigned to a cluster. These
clusters are the data-driven defined meteorological seasons. The following step is to
study the evolution of the seasons in future climate projection, which corresponds

to tracking the evolution of these clusters in new data.

4.4 Seasons projection: the Soft Max perceptron

The clusters obtained are defined by the temporal breakpoints, so a reasonable
approach to investigate the evolution of seasons to future projections in climate
model data could in principle be achieved by applying these breakpoints to the
new data, and then study the evolution of the physical values in the new clusters.
However, this approach has been discarded, since our purpose is to study how the
current definition of seasons will evolve, and this could imply a variation in their
onset and withdrawal, which cannot be captured with this method.

Another way analysis of the seasons in future climate could be obtained by
computing the clustering on the new data, losing memory about the ones computed
on historical data. This would allow us to obtain a dynamical definition of the
breakpoints, but again new clusters may not be correlated to the previous ones,
preventing us from exploring the evolution of the present seasons.

Considering the above points, we decided to rely on supervised learning: the
obtained clusters could be used as a labeled dataset for the training, in order to
make the system learn the features of the present-day seasons. Once the algorithm
is trained, it should be able to assign each day of the climate projection to one of
them. This method does not ensure that the resulting seasons are time contiguous.
So, their eventual contiguity will be used as a criterion for the validation of the
model.

The most used supervised-learning methods are the neural networks (NNs). NNs
have turned out to be able to find complex structures in high-dimensional data due
to their multilayered structure, and in this way establish relationships between the
input data and the belonging class [LeCun et al., 2015].

Since NNs have a complex architecture which could influence the results, and
therefore the architecture and the hyperparameters must be chosen and calibrated
accurately, we firstly tried with a perceptron. In the case study and results chapters,
we will show that the perceptron showed to be reliable , and then we assumed there

is no need for a NN.
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4.4.1 Perceptron architecture

As exposed in section 4.1.1 the perceptron is the progenitor of the NNs and is formed
by only two layers: the input layer and the output layer (Figure 4.5). Technically, a
perceptron is a binary classifier, while in this work we will face configuration where
more than two seasons need to be classified. Nevertheless, the architecture of the
perceptron could be generalized such that instead of estimating the probability of
an event, we can estimate a vector with the probabilities of each of the multiple

possible outcomes.

\ classifier

Figure 4.5: Schematic representation of a softmax perceptron: the lines between input
and classifier units are the weights w.

Considering Figure 4.5, the input layer has N neurons, where N is the number
of the features of the data, and the classifier (henceforth also called output layer)
has K units, where K is the number of seasons. The perceptron computes for each
unit in the output layer (i.e., for each season) the probability that the input data
is associated to that unit (i.e. is associated to that season). This computation is
performed with the SoftMax function [Bishop, 2006]. Being p(y™ = k|X™, wy) the
probability that the nth data is associated to the season k, we compute the SoftMax

as:

1
ZN . eWwi,ot. .. Fwi N

1=

p(X",wy) = i ety (4.9)

Consequently, the sum of the probabilities for each class must be equal to 1.

The training process aims to optimize the weights w; such as the class that gets the
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best score is the one that the data belongs to. This is achieved by minimizing a
loss function L(X,w). In this work we use the Categorical Cross-Entropy (CCE)
[Lugosi and Cesa-Bianchi, 2005]. CCE is a loss function suitable for cases in which
the output of the model is a probability distribution over multiple classes, as it is
in our work, and is one of the most used in multi-class classification. The CCE loss

function is defined as:

L(X,w) = = 3y loglp(X", wy)] (4.10)

Where yn is the true class of the data. There is no analytic method for the
minimization of this function, so a stochastic approach is used. The optimization of

the weights is part of the training process, explained in the next subsections.

4.4.2 Dataset preparation

In our case, the dataset used for the building of the model is the one derived by
the clustering. These data are currently represented by the two-dimensional ma-
trix in Figure 4.4, with shape (365X (#years x #latitude pts * #longitude pts *
#variables)). Each day is labeled with its season, so the labels are organized in
a vector of 365 elements. A dataset of 365 elements is too small, and risks pro-
viding too few examples. So, data are reshaped in a two dimensional matrix with
shape (365 * #years) X (#latitude pts * #longitude pts x #variables). Thus, the
labels vector is expanded by repeating itself for years times. The real values of the
shape depend on the size of the region (for the #lat pts and #lon pts), the included
variables and the number of years in the dataset used for the seasonal clustering.
These values are specified in the case study, while here are kept undefined in order

to maintain generality. Once the dataset is created, it is divided into the three sets:

1. Training set (64% of total data): is used for the optimization of the weights w

in the training, as will be detailed in the next subsection.

2. Validation set (16% of total data): is used for controlling the learning process.
During training, the model is repeatedly evaluated on the validation set to
assess its performance. It is important to note that the validation set must

not be used for weights optimization.
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3. Test set (20% of total data): is used to test the performance of the model in
new, unseen data (section 4.4.4). For this reason, it is important that these

data are not used either in training and validation processes.

This division is performed randomly, imposing that the proportion of days be-

longing to each season is respected in each of the aforementioned sets.

4.4.3 Learning process

The learning process aims to optimize the weights between the input and output
layers such that the model could recognize the data and assign them to the correct
class. The learning process consists of a pre-defined number of iterations (epochs),
in which the model processes all the data in the training set. The training set is
divided in batches of 128 items, then in each epoch the model processes sequentially
the data in each batch. For each batch the weights are optimized in order to lower
the loss. In this works we use stochastic gradient descent (SGD) optimizer, which

updates the weight at each iteration n of the learning process with:

wln] = wln — 1] = A[)VQ(a[n], wln — 1) (4.11)

where is the learning rate. It is worth noting that SGD is a simple stochastic
algorithm, while more sophisticated optimizers are available in literature. Never-
theless, as it will be exposed in the case study section, it provides good results and
then we assume there is no need to change it. At the end of each epoch, the loss
is computed over the validation set in order to check the performance of the model
over data which are not used for the training. Moreover, at each epoch the accuracy
is computed on both training and validation sets, defined as the number of correct
assignments of the model over the total size of the set. Plotting accuracy and loss
versus the epochs results in the so-called learning curves. Visually, the learning
curves could help in controlling the learning process: if their spread increases (i.e.,
training loss decreases more rapidly than validation loss), the model is occurring in
overfitting, i.e., it is losing its ability to generalize and extract correct information

from new data.

4.4.4 Test phase

Once the model is trained, it must be tested in order to evaluate its performance.

The test set is used, which - by definition - has never been seen by the model in the
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training phase. The following metrics are used in this phase:

1. Accuracy

s . _ #datacorrectly assignedtok s .
2. Precision: for each class k, pr = Z total dataassignediok Precision gives an

estimation of what is the proportion of the data assigned to class k that is

effectively correct.

. _ #datacorrectly assignedtok : . :
3. Recall: for each class k, r, = iotal databelonging ok Recall gives an estimation

of the proportion of element belonging to class k that are found by the model.

After the testing phase, the model is ready to be used for the classification of

new data.
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Chapter 5

Hindu-Kush Karakoram/Himalaya

seasonal cycle

The study area analyzed in this work is the Hindu-Kush Karakoram/Himalaya
region (HKKH). This region could itself be divided into two distinct subregions,
namely the Hindu-Kush Karakoram (hereinafter, HKK) and the Himalaya (Him)
[Palazzi et al., 2013] (see figure 5.1). The interesting feature of this area is that the
two subregions, even being space-contiguous, show considerably different seasonal
precipitation patterns. As better detailed in the following paragraphs, the HKK re-
gion is characterized by a bimodal precipitation seasonal pattern, with a winter peak
driven by Western Disturbances (WDs, see section 5.2) and a summer peak related
to the Indian Summer Monsoon (section 5.1). The Him region, on the contrary,
is only characterized by a summer peak, since the WDs contribution is confined
further to the North-West. These differences in terms of seasonal cycles, widely
documented in the literature, make the region a good case study for the validation
of the proposed methodology for season identification.

In this chapter we will present a brief climatic characterization of the HKKH
region, without the goal of being exhaustive. We will focus on the phenomenology
of the precipitation seasonal features, rather than their physical drivers, trying to
detect and validate the existing criteria found in literature for the time-space sep-
aration of the seasonal patterns. Attention is also paid to interannual variability,
the possible role of atmospheric teleconnections, past and expected trends, in order
to widen the number of criteria for the validation of the proposed methodology.
Sections 5.1 and 5.2 deal with the Indian Summer Monsoon and the Western distur-
bances, respectively, while section 5.3 contains a focus on the HKK and Him regions.
Section 5.4 contains the results of the proposed methodology for the region. Finally,

in section 5.5 the results are briefly commented and discussed.
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Figure 5.1: Spatial domain of the HKKH region: the red box represents the HKK box [Longi-
tude 71-78 °E, Latitude 32-37 °N], the blue box represents the Him region [Longitude 78-93 °E,
Latitude 25-32 °N]. Color shading shows the elevation data obtained from ERA5 orography.

5.1 Indian Summer Monsoon

5.1.1 Main features

The term “monsoon” is traditionally associated with the rainy period which ac-
companies a change in the seasonal prevailing wind in much of the tropics. In the
regions prone to the monsoon, this circulation dominates the seasonal precipitation
patterns, as the origin itself of the world, also suggests, which probably derives
from the Arabic word mausim or the Malayan monsin which both mean season
[Zhisheng et al., 2015]. For centuries it has been seen as a regional phenomenon
similar to a giant land-sea breeze circulation [Gadgil, 2003, Zhisheng et al., 2015].
The more sophisticated concept of Global Monsoon (GM) emerged in the second
half of the XX century, as global observational datasets became available. The GM
could be interpreted as the first Empirical Orthogonal Function (EOF) of the an-
nual anomaly of precipitation and circulation in the global tropics and subtropics,
physically driven by the seasonal migration of the Intertropical Convergence Zone
(ITCZ). Areas prone to GM are identified by the IPCC as those in which the annual
precipitation range (i.e. the difference between the annual maximum and minimum
precipitation) exceeds 2.5%, with no further requirements. However, this could
lead to the inclusion of areas where the source of precipitation is not monsoonal.

Therefore, a subsequent analysis was performed by the IPCC based on the published
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literature [IPCC, 2021a] (figure 5.2).

Figure 5.2: Global and regional monsoon domains: area interested by global monsoon
(black line) and regional monsoon domains (colored areas). Regions that satisfy the GM criterium
but are found to be dominated by a non-monsoonal dynamics are indicated with dots (source:
IPCC, 2021: Annex V: Monsoons).

The South-Asian Monsoon (SAM) — the part of the monsoon system which
mostly influences the HKKH region — can be regarded as part of the Asian Sum-
mer Monsoon (ASM). Since it covers wide geographical areas encompassing several
countries, it has a unique impact on the economy of the region. In the Indian sub-
continent, more than 60% of agriculture is rain fed and more than 70% of total
rainfall occurs in the Monsoon season [Amrith, 2018]. Furthermore, the ASM pro-
vides precipitation to the southern slopes of Central and Eastern Himalayas. The
spatial distribution of precipitation follows the orography of the region, with maxima
located along the west coast of the Indian subcontinent (along the mountains called
Western Ghats) and over the South-Eastern Himalayas [Gadgil, 2003]. The inter-
annual variability of total precipitation shows consistent year-to-year fluctuations,
while decadal variability presents alternate ~ 30 years-long periods of precipitation
above and below the average [Kripalani et al., 2003]. Until the end of the XX cen-
tury a negative correlation between El Nino—Southern Oscillation (ENSO) phases
(an irregular periodic positive anomaly in sea surface temperatures over the tropi-
cal eastern Pacific Ocean—one of the most important tropical teleconnections) and
rainfall anomaly was observed, but in the last 20 years this relationship has shown a

reversal suggesting the absence of a direct linkage [Gadgil, 2003, Dimri et al., 2016].

5.1.2 ASM Onset, progress, and withdrawal

Several studies, e.g. [Wu and Zhang, 1998, Liu et al., 2015], have found a triphasic

space-time structure in the ASM onset process. The onset begins (15 phase) in the
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south-eastern part of the Bay of Bengal (known as the BOB monsoon), associated
with an overturning of the meridional air temperature gradient [Mao and Wu, 2007]
and the development of the so-called “monsoon onset vortex”. This vortex, a low
pressure system over the Central-East Arabian Seas, brings the monsoonal flow
to the South-West Indian paninsula [Deepa and Oh, 2014]. This is followed (274
phase) by onset over the South China Sea, driven by atmospheric internal variabil-
ity combined with the thermal and mechanical effects due to orography. The Indian
Summer Monsoon (ISM) onset (3" phase) can be seen as the northward seasonal
movement of the Intertropical Convergence Zone (ITCZ) [Gadgil, 2003], or alterna-
tively, as the westward propagation of the BOB monsoon. In each onset phase, the
importance of the thermal and mechanical effects of orography and particularly of
the forcing associated with teh Tibetan Plateau has been highlighted several times
[Liu et al., 2015]. It must be noticed that while the specific physical mechanisms
are still open to debate, the triphasic structure is now commonly accepted by the
scientific community. Since the physical characteristics of each component of the
ASM is not relevant for the purpose of this work, we will hereafter simplify the
discussion defining Monsoon the rainy season in India, in agreement with the India
Meteorological Department (IMD).

After the onset, the Monsoon propagates north-westward and covers the entire
Indian territory by middle of July [Pai and Rajeevan, 2009]. The withdrawal runs
backwards the same trajectory, between the 15th September and the end of October.
The Monsoon firstly hits the Indian South-Western state of Kerala. For this, the
onset date is historically established looking at Kerala. In the last twenty years, the
criteria for declaring the onset date have been updated several times, thanks to the
availability of datasets with continuously increasing spatial and temporal resolution.
Criteria used by the IMD and their historical evolution are briefly described here.
It is worth noting that the IMD criteria are being widely used for the evaluation of
new models.

For more than a century, the IMD has established the Monsoon onset date rely-

ing on seven rain gauge stations. The onset was declared on the second consecutive

mm
1 day

dated in 2006, when the current criteria were introduced [Pai and Rajeevan, 2009],

day after May 10" in which measured rain exceeded This method was up-

in which the onset is declared over the Kerala state, after May 15

e At least 60% of the 14 chosen stations rainfall values greater than or equal to

2.5 mm.

e Depth of westerlies should be maintained up to 600 hPa, in the geographical
box extending from the equator to 10° N and from 55° E to 80° E. The zonal
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wind speed over the area between 5 and 10° N, and 70 and 80 °E should
be of the order of 1520 Kts. at 925 hPa. The data source can be either
wind from analyses or satellite derived winds from the Regional Specialized

Meteorological Centre for Tropical Cyclones over North Indian Ocean (RSMC)

e Indian National Satellite System (INSAT) derived Outgoing Longwave Radi-
ation (OLR) value should be below 200 % in the box confined by Latitude
5-10°N and Longitude 70-75°E.

After the onset over Kerala, the Monsoon advances northward across the sub-
continent. Each region has its own onset date, called progress date, which is subse-
quential but not strictly correlated with the Kerala onset date (i.e., a delay in Kerala
does not imply a delay in another country). In this section the so-called progress
normal dates, which are the mean of the progress dates over a certain period, are
presented.

Until 2020 the Monsoon progress normal dates were derived based on a network
of 149 stations: the date of progress of monsoon over a station was taken as the
middle date of the 5 days period showing the characteristic rise in the rainfall curve.
The dates used by IMD were derived in the period 1901-1940. In 2020, a new
method was introduced [Pai et al., 2020] based on a 1x1 gridded dataset (IMD-4)
developed by the IMD and obtained by more than 2000 stations. This method
was defined to obtain progress dates in agreement with the older method and was
calibrated in the period 1961-2019 [Pai et al., 2020]. The Kerala onset date is the
same as illustrated before. The other grid points are divided in 3 categories and for
each category a specific method is defined. As a consequence, these methods are
not physical but created ad-hoc.

In the literature, there are only a few studies about Monsoon withdrawal dates,
especially compared with the studies focused on the onset and progress dates, and
therefore the operational method has not been updated in 2020 [Pai et al., 2020].
The following criteria, adopted in 2006, are used, after September 15*(IMD):

e End of rainfall activity over the area for five continuous days.
e Establishment of anticyclone in the lower troposphere (850 hPa and below).

e Considerable reduction in moisture content as inferred from satellite water

vapor images and tephigrams.

5.1.3 Past and expected changes

In the last decades Indian Summer Monsoon has experienced a weakening in its

circulation pattern and a decrease in its associated rainfall, which has been assessed
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by many studies [Bingyi, 2005, Palazzi et al., 2013], probably caused by the warming
of the Indian Ocean with a consequent decrease of sea-land temperature contrast.
The role of this warming is still unclear and makes future projections uncertain:
Global Circulation Models (GCMs) show a clear linkage between the increase in Sea
Surface Temperature (SST) and the increase in monsoon rainfall, but the recent
weakening of monsoon circulation seems to indicate that this temperature increase
could result in a rainfall weakening, too [Roxy et al., 2015]. CMIP5 models indicate
an increase in mean rainfall for the future, but show a significant inter-model spread
in the representation of the seasonal cycle of rainfall patterns and only few models
could reproduce it satisfactorily when compared to observations. On the other hand,
the latest generation of CMIP6 models confirms the overall future trend found in
CMIP5 and also shows a smaller internal spread, along with a better agreement

with observations [Katzenberger et al., 2021].

5.2 Western Disturbances

5.2.1 Main features

The Indian summer Monsoon decreases while penetrating in the north-west of India
and in northern Pakistan, and does not propagate far enough to reach internal Cen-
tral Asian countries such as Afghanistan, Iran and Tajikistan [Seyed et al., 2006].
On the other hand, these areas are affected by recurrent events of winter precip-
itation (usually in the form of snow), which represent a precious water supply
for the maintenance of glaciers and downstream for population [Seyed et al., 2006,
Palazzi et al., 2013].

This precipitation pattern is caused by the so-called western weather patterns or
Western Disturbances (WDs). The IMD defines them as the “extratropical storms
that originate in the Mediterranean region which brings sudden winter rain to the
north-western parts of the Indian subcontinent”. These extratropical storms carry
moisture in the upper layers of the atmosphere and then are pushed eastward by the
westerly winds, until the interaction with the complex orography of the region leads
to precipitation. Although the mechanism of this simplified model seems straightfor-
ward, the phenomenon has not been fully understood yet [Dimri et al., 2016]. It has
been found that WDs have an important impact on the Summer Monsoon, since they
induce a local change in albedo through snow accumulation on the mountain ranges,
and albedo has an important role in the development of the Monsoon. Nevertheless,
a full understanding of the phenomenon is far to be reached [Dimri et al., 2016].

WD precipitation shows a large interannual variability, and has been found to
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weaken in presence of a positive anomaly of SST in the Arabian Sea. Further-
more, WD precipitation shows a positive anomaly associated with a positive NAO
and a warm ENSO, and a negative anomaly with negative NAO and cold ENSO
[Dimri et al., 2016]. Contrary to the case of the monsoon, WDs do not have a large
literature background concerning their timing (i.e. onset and decay) and evolution.
For this reason, we will keep as reference for their typical period the standard five
months from December to April (DJFMA) as in e.g. [Palazzi et al., 2013].

5.2.2 Past and expected changes

The area interested by WDs (Western Himalayas) has already experienced a signifi-
cant trend in increasing temperatures in the last decades. This especially affected the
mountain areas, making the region a case study of the so-called “elevation-dependent
warming”, i.e. the emerging evidence that mountain environments around the world
are experiencing a more rapid change in temperature. In the period 1961-2006,
the observed warming was of 2-2.5 °C above 5000 m and only 0.5 °C at sea level
[Xu and Rutledge, 2019]. On the other hand, summer cooling has been reported for
the period 1961-2015 [Krishnan, 2019], with an associated thickening of the local
glaciers. Historical precipitation trends have not been defined, especially due to the
lack of stations in the region [Palazzi et al., 2013].

In the future, temperature is expected to increase with a high level of confidence,
with the possibility of exceeding an increase of 5°C by the end of the century in the
SSP5-8.5 high emission scenario [IPCC, 2021b]. Projections on precipitation are
more uncertain. CMIP5 models exhibited some spread in the representation of the
precipitation seasonal cycle in the region [Palazzi et al., 2015], and also dynamically-
downscaled datasets showed a similar behavior [IPCC, 2021b]. However, the new
generation of CMIP6 GCMs shows an increment in winter precipitation, assessed
with medium level of confidence in the IPCC AR6 [IPCC, 2021b].

5.3 Seasonal cycle in the HKKH

In this section the seasonal precipitation pattern in the study region is evaluated. We
use the spatial division performed by [Palazzi et al., 2013, Palazzi et al., 2015] to de-
fine climatically-coherent subregions of the entire HKKH: the Hindu-Kush Karako-
ram (HKK) and Himalaya (Him) regions (as shown by Figure 5.1). These boxes
have been created since the spatial features of the Monsoon and the WDs prevent
us from treating the HKKH as a single region, as it is exposed to different circu-

lation patterns affecting precipitation seasonality. In fact, the Himalayan region is
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dominated by Monsoon-controlled dynamics, while in the HKK, precipitation also
occurs during Winter, due to the WDs. In section 5.3.1 we evaluate the spatial
behavior of the seasonal precipitation pattern in the HKKH region in the ERAS
Reanalysis and in the EC-Earth3 Earth System Model, i.e. in the datasets that will
be used for the evaluation of our methodology for seasons identification. Note that
for EC-Earth3 we have three ensemble members (see chapter Data). In this part
we will use the mean of these members, usually known as ensemble mean. Section
5.3.2 contains a literature review of the seasons onset and withdrawal, that from
now on we will also call seasonal breakpoints. The aim of this section is to es-
tablish the reference seasonal breakpoints that will be used for the validation of the
model. Finally, in section 5.3.3 the future trends in precipitation seasonal patterns
will be assessed, using as seasonal breakpoints the ones identified in section 5.3.2.
The results obtained in this part will be compared with the future trends obtained
with the seasonal breakpoints that will result from our algorithm.

As highlighted, the most interesting seasonal pattern in the region is the one
concerning precipitation. Thus, the main focus of our analysis will be on this vari-
able. The analysis presented in this section is performed on precipitation, and also
the result of our methodology for the division in seasons will be discussed focus-
ing on precipitation. Nevertheless, we could assume that precipitation alone is not
enough for the evaluation of seasons. For example, Monsoon onset over Kerala is
determined looking also at winds and OLR, as detailed before. On the other hand,
using a set of ad-hoc chosen variables for each case study would be in contrast with
our purpose of generality. Therefore we decided to use for our model also the sur-
face air temperature. This choice is driven by the fact that total precipitation and
surface air temperature are the most used variables for climatic characterization.
Spatially, surface air temperature in HKKH presents a gradient that follows the
elevation. During the year, the maxima are located in Summer and the minima in
Winter. In this work we decided to omit an in-depth analysis of temperature, which

could be explored in a followup work.

Note on nomenclature: in the following sections, we will introduce three sets of
seasonal breakpoints, i. e., dates which mark the transition between the seasons.
The first is obtained from a review performed on the literature, the second will
be the result of our clustering algorithm. For clarity, from now on we will call
reference breakpoints the first set, and algorithm breakpoint the second one.
As a consequence of the definition we introduced, these breakpoints are static, which
means that they do not change from one year to another. Consequently, a third set is
introduced, and is used for the future evolution of meteorological seasons, obtained

with classification. These ones will be defined as of dynamical breakpoints, since
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these breakpoints can change through years.

5.3.1 Evaluation of the HKK and Him precipitation

As seen in the previous section, rainfall in the North and Northwest areas of India
are affected by the northwestward propagation of the Monsoon and by the eastward
propagation of the Westerly Disturbances, which both weaken in their paths. This
results in a division in two areas: one where the Winter peak is more prominent
than the Summer one, and the other one where the opposite occurs. An evaluation
of this division in the ERA5 dataset shows that the HKK box includes the area
dominated by the WDs characterized by a significant precipitation amount, both in
Winter and Summer (Figure 5.3 A-B). On the other hand, the Him box includes
the areas where the Summer Monsoon is the dominant feature, and excludes the
Eastern sector over Bangladesh, where there is also a significant peak during winter.
An effective method to extract the different role of the monsoon and WDs is to
compare the intensity of the winter and summer peak (Figure 5.3 C). We can note
that the Him box includes the area dominated by the Summer peak while the HKK
box is mostly dominated by Winter peak, except for the South-Western part. In
the EC-Earth3 climate model, the situation is slightly different. Here the difference
of the peaks is evaluated using the whole available period (1850-2100) (Figure 5.4).
The Him box is dominated by the Summer peak with no significant variations over
time. The HKK box is dominated by Winter peak, but its intensity is lower than in
ERAS5. Nevertheless, also for HKK no significant variations over time emerge.

Now we evaluate the mean seasonal cycle in the two boxes for both datasets.
For ERAD, as expected, the mean precipitation seasonal pattern is bimodal with
two peaks in the HKK box (Figure 5.5 A), and has only one peak in the Him region
(Figure 5.5 B). For EC-Earth3, it is possible to note a delay of about one month in
both the summer and winter peak, compared to the seasonal cycle in ERAS, in the
HKK region for the historical period (Figure 5.6 A). Furthermore, a small peak can
be observed in November, probably due to a specific bias in the EC-Earth3 seasonal
precipitations cycle, which waa also already assessed by [Palazzi et al., 2015]. In
EC-Earth3 future projections (SSP5-8.5 scenario) for the HKK region (Figure 5.7
A), the winter peak is replaced by a plateau that extends from March to May, while
the summer peak anticipates compared to the historical period. As for the Him
region, the Summer peak in both historical and future simulations of EC-Earth3 is
slightly delayed compared to ERA5 (Figures 5.6 B and 5.7 B). Overall, EC-Earth3
shows a dry bias of about 2 mm/day compared to ERAS5.
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Figure 5.3: Summer and Winter peak in HKKH in ERA5 (1979-2020): maximum of total
precipitation seasonal cycle in winter months, i.e. NDJFMA (A), maximum of total precipitation
seasonal cycle in summer months, i.e. MJJASO (B), difference between the maximum in NDJFMA
and MJJASO (C). In the peack difference the seasonal cycle of each grid point has been previously
normalized with min-max normalization, in order to compare the intensity of peaks. Thus blue
areas are dominated by winter peak, and red areas by summer peak. For each graph ERA5 in
the period 1979-2020 has been used. Red contours, shown in all panels, represent the orography
obtained by ERA5, with [m] as unit for the inline values.
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Figure 5.4: Summer and Winter peak in HKKH in EC-Earth3 (1850-2100): same as
Figure 5.4 but for EC-Earth3 climate model on different time windows.
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Figure 5.5: Seasonal precipitation cycles in HKK (A) and Him (B) boxes in ERA5
(1979-2020). The seasonal cycle is computed averaging precipitation for each ordinal day of the
year. Solid lines are the spatial mean, while shadowed areas are the spatial standard deviation.
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Figure 5.6: Seasonal precipitation cycles in HKK (A) and Him (B) boxes in EC-
Earth3 historical (1850-2014). Same as Figure 5.5 but for EC-Earth3 historical.

EC-Earth seasonal cycle (projection) A

mm/day

10 4

mm/day

0 . : . . . . . . . :
jan feb mar apr may jun jul aug  sep oct nov  dec

Figure 5.7: Seasonal precipitation cycles in HKK (A) and Him (B) boxes in EC-
Earth3 SSP5-8.5 scenario (2015-2100). Same as Figure 5.5 but for EC-Earth3 SSP5-8.5.
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5.3.2 Breakpoint dates review

For the reference breakpoints, the literature suggests DJFMA as the winter precip-
itation season and JJAS as the summer monsoon season. e.g. [Palazzi et al., 2013].
The two intermediate dry seasons turn out to be only May for Spring and October
and November for Autumn. A finer approach to timing could be performed con-
sidering the normal onset and withdrawal dates proposed by the IMD (Figure 5.8).
The onset date within the Him boundaries is June 8" 4 7 days, the withdrawal
date is October 5" + 6 days for a total length of 109 + 11 days. These dates will
be used as reference for the Him box, since a two-season model seems to be the
best approach for this region. For the HKK region the breakpoints suggested by
[Palazzi et al., 2013] will be used for the transition from Autumn to Winter and
from Winter to spring, while we will use the IMD dates for on the onset and with-
drawal date of the Monsoon. IMD dates in HKK boxes are June 25" £ 3 days for
the onset and October 2"¢ + 1 day for the withdrawal, with a total length of 89 +

4 days. Table 5.1 summarizes the reference breakpoints we will use for the model

validation.
Winter Spring Summer Autumn
’ HKK | 1 Dec - 30 Apr | 1 May - 25 Jun | 25 Jun - 2 Oct | 3 Oct - 31 Nov
Dry Monsoon
’ Him 6 Oct - 17 Jun 18 jun - 5 Oct

Table 5.1: Reference breakpoints in HKK and Him boxes based on literature review. The
seasons names have been chosen arbitrarily, and don’t necessarily have references to the seasons
at mid-latitudes.
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Figure 5.8: Monsoon onset and withdrawal: summer monsoon onset normal date (A),
summer monsoon withdrawal normal date (B) and resulting length of the monsoon season (C).
Figures are obtained by bilinear interpolation of multiple ’single station’ values provided by IMD.

These points are represented by triangles. Red contours are orography obtained by ERA5, with
[m] as unit for the inline values.
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5.3.3 Future trends

Now the rainfall future trends (2020-2100) for multi-members mean EC-Earth3
model for the case study regions making use of the reference breakpoints are eval-
uated. Mean daily precipitation and seasonal accumulated precipitation are chosen
as reference metrics for each season since both of them are sensitive to the seasonal
boundaries. In fact, given the sinusoidal shape of the seasonal precipitation pattern,
changing the boundaries modifies the mean and cumulative values. For this reason,
they are suitable for the comparison between trends obtained with reference break-
points and the ones obtained with algorithm breakpoints. Here we will use a simple
linear regression for trends evaluation. Please bear in mind that there is a wide
spectrum of available methods for the assessment of trends in climatology, such as
nonlinear methods, or nonparametric methods, and the most proper one should be
chosen based on the specific application.

The choice of a linear regression allows us to make a simple consideration about
the relationship between the trend of mean values and cumulative values. If we
assume that the number of days in a season is fixed, there is only a multiplicative
difference in trends of mean and cumulative values: being m; the time series of mean
values, ¢; the time series of cumulative values, L the linear operator representing
the linear trend, and n; the number of days in a season, the trends for m; and ¢;

will be respectively:

But being m; = ¢; * ny:
T. = L[my % ny
If n; is constant in time, n; = n, for linearity we can write:
T.=Limy)xn="T,*n

The last identity is not true if n; can change through years, meaning that in this
case there will not be a linear dependency between the two metrics. The reference
breakpoints, as the algorithm breakpoints, are time invariant, i. e. they do not
change throughout the years. So, with these breakpoints the number of days in a
season is fixed and there is a linear relation between mean values and cumulative
value trends. The dynamical breakpoints could change through the years. So,
the number of days in a season is not fixed and this linear relation is no longer
guaranteed. Now the results obtained with reference breakpoints are presented.

Note that being mean values trends and cumulative values trends linearly related,
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presenting both of them would be redundant. For this reason, now only the mean

values trends are presented.

With the reference breakpoints, an overall precipitation increase in HKK is
expected in the period 2020-2100 under the SSP5-8.5 scenario, except for Autumn
(Figure 5.9 D). This increase is particularly pronounced in the South-East area in
Summer and North-West in Winter (Figure 5.10 A, C), suggesting an increase of
precipitation associated respectively to Monsoon and WDs. Also in Him box positive
trends are expected, especially in mountain areas during Monsoon season (Figures
5.11 and 5.12). A spot of positive significant trends in South-East area in the Dry
season (Figure 5.12 A) suggests caution, since this is the area that is firstly hit by
monsoon and last left by its withdrawal. This trend may be therefore caused by
a stretching of the monsoon season, and will be verified at the light of the results

obtained with dynamical breakpoints.
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Figure 5.9: HKK mean seasonal precipitation future trend boxplot (reference break-
points): linear trends are computed with a Mann-Kendall test for monotonic trend over each grid
point. Trends are computed for each season defined with reference breakpoints separately, using
data contained in EC-Earth3 dataset for future projection under SSP5-8.5 scenario. Each scatter
point represents the trend of a grid point. Red markers indicate points whose p-value exceeds
the threshold of 0.05, and are therefore considered non significant. The boxplot only represents
significant values.
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Figure 5.10: HKK seasonal mean precipitation future trend (reference breakpoints):
the method is the same of figure 5.9. Here non-significant values are shown in white. Red contours,
shown in all panels, represent the orography obtained by ERA5, with [m] as unit for the inline

values.
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Figure 5.11: Him mean seasonal precipitation future trend boxplot (reference break-

points): same as figure 5.9.
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Figure 5.12: Him seasonal mean precipitation future trend (reference breakpoints):
same as figure 5.25.

5.4 Results of the model

This section contains the application of the algorithm designed in this thesis (Chap-
ter 3) to the HKK and Him regions. As detailed before, for the identification of sea-
sons both surface air temperature and total precipitation are used, but the results
are exposed focusing on precipitation. In the first part, the Radially Constrained
Clustering algorithm is used on the ERAb dataset over the period 1979-2020. This
will allow for the identification of the algorithm breakpoints, i.e. the dates which
mark the transition between seasons defined in a data-driven way. These breakpoints
will be compared with reference breakpoints to assess the results of the algorithm.
The meteorological seasons obtained in this part will be used as base ground for the
assessment of the seasons in the EC-Earth3 future climate simulations. This will be
done in the second part of this section, where the classification of EC-Earth3 data
into the seasons is performed making use of the SoftMax perceptron. The classifi-
cation will be performed for each ensemble member both in historical period and
future projection with SSP5-8.5 scenario. This will lead to the identification of the
dynamical breakpoints. There are three scientific questions we will try to answer in

this part:

1. How much the EC-Earth3 representation of the seasons could be considered
reliable, compared with ERA5 one. This will be addressed by comparing the

algorithm breakpoints with dynamical breakpoints in historical period.

2. How meteorological seasons have changed in the historical period, and how
they will change in the future, according to EC-Earth3. This will be addressed

evaluating the time evolution of dynamical breakpoints.
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3. How an evolving recognition of meteorological seasons influences the changes
in future season-dependent precipitation. and the related trends in mean and
cumulated seasonal values. This will be addressed computing the trends with
dynamical breakpoints and comparing them with the ones obtained with ref-

erence breakpoints.

In section 5.4.1 the optimal number of seasons is estimated using a combination
of the elbow method and silhouette score, to validate the goodness of the number of
seasons found in literature. In section 5.4.2 the clustering is performed. Both these
operations are carried out on ERA5 dataset over the period 1979-2020. In section
5.4.4, EC-Earth3 data are classified. Finally, in section 5.5, the results are briefly

discussed.

5.4.1 Number of seasons

The ideal number of seasons is evaluated using the ERA5 dataset. Radially Con-
strained Clustering (RCC) is performed for a number of clusters in range [1; 10] and
for each result the total Within Sum of Squares (WSS) and the silhouette coefficient
are computed. WSSs are reported in the elbow graph and tend to decrease when
increasing the number of clusters. Thus, the optimal number is usually chosen tak-
ing the point after which the gain decreases, i.e. the elbow of the graph. Silhouette
score compares the intra-clusters distance with the inter-clusters distance and has 1
as its optimal value.

According to the silhouette score, for the HKK box an optimal number of clusters
seems to be N = [7,9], since they are the values that achieve the highest scores
(Figure 5.13 B) meaning that clusters are well differentiated. On the other hand,
this will result in a high number of seasons which would be of a length of about less
than two months. A 4 seasons analysis, as found in literature, seems to be a good
approach in elbow graph (Figure 5.13 A), but achieves a bad score in silhouette
(Figure 5.13 B), meaning that the clusters are not well differentiated. A good
compromise between the two metrics seems to be N = 6: elbow graph shows a
decrease in gain and silhouette achieves a relatively good score. Nevertheless, the
algorithm breakpoints achieve better scores in both elbow graph and silhouette
compared to reference breakpoints (Figure 5.13 A B). In the following of this work,
we will continue to use N=4 in order to get results comparable to literature. A
future development of this work could be done varying the number of seasons, using
a value that is more performing in the metrics.

In the Him region both metrics suggest that a 2 seasons clustering is the best

approach: silhouette achieves the best score and the elbow in elbow graph is clearly
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distinguishable, meaning that the clusters are well defined and differentiated. Being

two also the reference breakpoints, we will continue our analysis with this number

of seasons.
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Figure 5.13: HKK number of seasons metrics: dashed lines are metrics computed with
RCC algorithm, black stars are the metrics computed on the clusters obtained with the reference
breakpoints
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Figure 5.14: Him number of seasons metrics: dashed lines are metrics computed with
RCC algorithm, black stars are the metrics computed on the clusters obtained with the reference
breakpoints

5.4.2 Clustering results

In this section the RCC algorithm is used on ERA5 dataset to compute the algorithm
breakpoints in order to obtain the data-driven seasons. This operation is performed
with 4 clusters for HKK and 2 clusters in Him, as documented in the previous

section.
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Clustering performed over the HKK region shows a good agreement with ref-
erence breakpoints (Figure 5.15). The succession of seasons is respected, and the
length is almost everywhere similar to the one described by reference breakpoints.
The result on the transition from Spring to Summer is particularly remarkable: this
breakpoint is assessed by many studies in literature and could be reproduced with
great precision by the model. The discrepancy with Winter withdrawal can be traced
back to the fact that this reference breakpoint does not recognize units smaller than
1 month. On the other hand, the starting Winter breakpoint shows an advance of
1 month from the reference one.

In the Him box the cluster performed with 2 seasons shows a good agreement
with the reference breakpoint in the transition from Monsoon to Dry, but has a shift
of about one month in the transition from Dry to Monsoon (Figure 5.16). In Table

5.2 the reference and algorithm breakpoints are reported.

mmmm Total precipitation
=== Temperature

Clustering results - HKK - 4 seasons

Normalized variable
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Month

Figure 5.15: Clustering results in HKK: solid lines are values averaged on the whole region,
shadowed areas are spatial standard deviations. Clustering results are reported as background
colors, while blue lines are reference breakpoints.

Winter Spring Summer Autumn
] HKK | Algorithm | 24 Jan - 20 Apr | 21 Apr - 25 Jun | 25 Jun - 27 Sep | 28 Sep - 23 Jan
Reference | 1 Dec - 30 Apr | 1 May - 25 Jun | 25 Jun -2 Oct | 3 Oct - 31 Nov

Dry Monsoon
‘ Him | Algorithm 1 Oct - 9 May 10 May - 30 Sep
Reference 6 Oct - 17 Jun 18 jun - 5 Oct

Table 5.2: Reference and algorithm breakpoints in HKK and Him boxes based on literature
review and on the results of RCC algorithm. The seasons names for RCC results have been assigned
arbitrarly.
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mmmm Total precipitation
=== Temperature

Clustering results - Him - 2 seasons

Normalized variable

jan feb  mar apr may jun jul aug sep oct nov  dec
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Figure 5.16: Clustering results in Him: solid lines are values averaged on the whole region,
shadowed areas are spatial standard deviations. Clustering results are reported as background
colors, while blue lines are reference breakpoints.

5.4.3 Training of the SoftMax perceptron

In order to proceed with the classification of the EC-Earth3 data, the SoftMax
perceptron must be trained and tested with the labeled dataset obtained in the
previous section.

For the HKK box, the SoftMax perceptron is setted with 140 input units (2
variables * 10 lon points * 7 lat points) and 4 units in the output layer, corresponding
respectively to Winter, Spring, Summer and Autumn seasons. The quality of the
perceptron learning will be assessed making use of the metrics described in Chapter
Methods.Looking at the learning curves, we can assume that 50 epochs are enough
for the training. Indeed, the accuracy reached stability (Figure 5.17 B) even after
30 epochs. The loss seems to be able to decrease further (Figure 5.17 A), but since
there is no improvement in accuracy we assume that it is not necessary to increase
the number of epochs. From the test phase we can state that the model is able to
learn the relationships between data and seasons, achieving good scores with fresh
new data (Figure 5.18). In fact, precision and recall are > 0.99 for all the seasons.

For the Him box, the SoftMax perceptron is setted with 440 input units (2 vari-
ables * 20 lon points * 11 lat points) and 2 units in the output layer, corresponding
respectively to Dry season and Monsoon season. The learning curves suggest that 40
epochs are enough for the training. Also in this case, despite loss seems to decrease
further (Figure 5.19 A), accuracy has reached stability (Figure 5.19 B). Again, the
confusion matrix states that the model has a good performance (Figure 5.20), with

precision and recall > 0.99.
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Figure 5.17: Learning curves for HKK: loss on training and validation sets (A), accuracy on
training and validation sets (B).
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Figure 5.18: Confusion matrix for HKK: number of items belonging to each class versus
number of items classified in each season. The elements on the diagional are the items correctly
classified.
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Figure 5.19: Learning curves for Him: loss on training and validation sets (A), accuracy on
training and validation sets (B).

Dry 4

True label

Monsoon

Dry Monsoon
Predicted label

Figure 5.20: Confusion matrix for Him: number of items belonging to each class versus
number of items classified in each season. The elements on the diagional are the items correctly
classified.
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5.4.4 Results of classification on climate projections

Now the SoftMax perceptron is used to classify the data in EC-Earth3. As detailed
in Methods chapter, for both HKK and Him boxes, the classification performed with
the SoftMax perceptron assigns to each day in EC-Earth3 the probability that this
day belongs to each season separately. As explained in the Dataset chapter, we
have three ensemble members of EC-Earth3 (rlilp1fl, r13ilp1fl, r15ilp1fl). Each
of them is composed of the historical period (1850-2014) and the future projection
under the SSP5-8.5 scenario (2015-2100). The classification is performed for each
day of each ensemble member, in order to obtain three possible realizations of the
meteorological seasons, which spans from 1850 to 2100. This range is reduced due
to the 30 years moving average performed on seasonal cycle (see Dataset chapter),
so that the actual results span from 1865 to 2085.

An overall result is obtained by averaging this probability through ensemble
realization. That is to say, for each day the probability that it belongs to each
season is average through ensemble members. Thus we can assign each day to the
season that achieves the highest probability (the so-called arg max mathematical
function). The arg max is one of the possible interpretations of this probabilistic
output. The result is a single breakdown of the days in the meteorological season.
A future development of this work could try to explore more powerful methods to
extract information from this type of result.

This operation is performed for both HKK and Him boxes. The first result is
that for both the regions the succession of seasons is respected quite evenly (Figures
5.21 and 5.22). This is non-obvious since the SoftMax perceptron does not have
information about the time location of each day on the calendar year. This fact
means that the SoftMax perceptron is able to extract relevant features from the
ERA5 dataset, and that these features are correctly recognized in EC-Earth3.

The Autumn and Winter seasons in HKK are an exception to this result (Figure
5.21). They are quite fragmented and a relevant spot of Winter day could be found
in the middle of the Autumn, especially in the period 1900-2020. This is probably
due to the third peak that was observed in Figure (5.6), and which was stated to
be an error of EC-Earth3. In this sense, this result could help in locating incon-
sistency in EC-Earth3 seasonal cycle representation. The fragmentation of Winter
and Autumn boundaries in HKK could be due to the fact that these seasons are not
well differentiated. In fact, we stated in section 5.4.1 that four seasons is not the
optimal choice for the HKK. A further development of this work could investigate
if changing the number of seasons produces more stable results in this sense.

In Him box the seasons are contiguous and the boundaries are not fragmented

(Figure 5.22). Since the clustering was performed with the optimal number of sea-
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sons, which is two, this gives value to the hypothesis that the fragmentation in HKK

Winter and Autumn is caused by a bad choice of the number of seasons.

EE Winter
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N Summer
2045 - Autumn
2015
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>
1955 -
1925 -
-
1895 - 1
1865 = '
jan feb mar apr may jun jul aug sep oct nov dec
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Figure 5.21: Time evolution of seasons in HKK: results of the SoftMax perceptron clas-
sification for the whole period in EC-Earth (1850-2015 historical, 2015-2100 SSP5-8.5 scenario).
Black lines are the algorithm breakpoints, and white shaded area represents the period used in
ERAS5 for the seasons definitions.
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Figure 5.22: Time evolution of seasons in Him: same as Figure 5.21.

The next step is evaluating the time evolution of the length of each season.
This is addressed simply counting the number of days contained in each season. We

perform this operation on the results obtained for each ensemble member and for
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the ensemble mean of probabilities obtained with the procedure explained in section
5.4.4.

In both regions we can note an increase in the Monsoon associated seasons length
(named as Summer in HKK, Monsoon in Him) (Figures 5.23 and 5.24). While this
is obviously related to a shortening of the dry season in Him (Figure 5.24), being
only two seasons, this is not in HKK where we used four seasons. In HKK (Figure
5.23) we can note that Summer and Spring have a low interannual variability. They
are stable in the historical period while in the future projection Summer tends to
increase its duration, and Spring tends to shorten it. Winter and Autumn have a
large interannual variability in the historical period, and also shows a large spread
between the ensemble members. In this period they also show complementarity, i.e.,
when Autumn is longer Winter is shorter and vice versa. This confirms the difficulty
of SoftMax perceptron in the identification of these two seasons in HKK, as stated
above. Nevertheless it is worth to note that this behavior tends to disappear in the
future projection under the SSP5-8.5 scenario. What we observe here is an increase
in the duration of the Autumn season, and a shortening of Winter. There is a double
interpretation of that: 1) the changes in seasonal patterns driven by the climate
change are differentiating these two seasons making them more distinguishable for
the SoftMax perceptron or 2) it is only a phase of a cycle, and if we could see further
in time, we would see a behavior similar to the one observed in the historical period.
Even in this case, an analysis performed with a different number of seasons might
help answer this question.

The trend observed in Him is more clear (Figure 5.24), the shortening of the
Dry season and the stretching of the Monsoon season is present in all the ensemble

members, which also show a low spread.
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Figure 5.23: Time evolution of seasons length in HKK: dotted lines are the results of each
ensemble member in Ec-Eart3h, while solid lines are the members’ average.
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Figure 5.24: Time evolution of seasons length in Him: same as Figure (Figure 5.23).
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5.4.5 Future trends with dynamical seasons

As we stated in section 5.3.3, a redefinition of seasonal breakpoints could imply
a change in the mean and cumulative values of precipitation in the seasons, and
therefore a change in their trends. Furthermore, using the dynamic breakpoints
obtained from the SoftMax perceptron on EC-Earth3, the season length is no longer
forced to be constant through years. This means that there could not be a linear
relationship between cumulative and mean values trends, as happened with reference
breakpoints. In this subsection we present the future trends on rainfall seasons mean
and cumulative values are computed, computed using the dynamical breakpoints
obtained before.

In HKK in all four seasons an increase in mean precipitation is expected, mainly
in center and North areas (Figure 5.25 A, B, C, D), which are the mountain areas.
This increase is lower than the one obtained with reference breakpoints in Summer
(Figure 5.27 C) but with less spread between the grid points. In Winter (Figure
5.27 A) the mean values trends computed with dynamical breakpoints are slightly
higher than the ones computed with reference breakpoints. Cumulative values trends
computed with dynamical seasons are everywhere positive and higher than the ones
obtained with reference breakpoints (Figure 5.27 E, F, G, H). This is particularly
remarkable in Spring and Autumn (Figure 5.27 F H), which are the seasons which
receive less precipitation. Spatially, this increase is concentrated in the North-West
area in Winter (Figure 5.26 A), in the Center area in Spring (Figure 5.26 B), in the
East and South areas in Summer (Figure 5.26 C) and in the South-West in Autumn
(Figure 5.26 D)

A similar pattern could be observed in Him Box. Average values trends are
higher in Winter (Figure 5.30 A) and lower in Summer (Figure 5.30 B) than the
ones computed with reference breakpoints. On the other hand, cumulative values
trends obtained with dynamical seasons are higher than the ones obtained with
reference breakpoints (Figure 5.30 C, D). The increase in mean values is localized in
the Center mountain area (Figure 5.25 A B). About Figure 5.28, we stated that with
reference breakpoints there was a spot of significative high values in the South-East
area, and we warned that could be caused by a stretching of the Monsoon season.
This stretching was actually observed (Figures 5.22 and 5.24), and the trends are
now positive not only in the South-East but also in the Center. In Him we can also
note that the spatial distribution of cumulative values trends is similar to the one

of mean values trends (Figure 5.28).
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Figure 5.25: HKK seasonal mean precipitation future trend maps (dynamical break-
points): the method is the same as Figure 5.10 but with dynamical breakpoints.
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Figure 5.26: HKK seasonal cumulative precipitation future trend maps (dynamical
breakpoints): the method is the same as Figure 5.10 but with dynamical breakpoints and trends
computed for cumulative values.
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Figure 5.27: HKK seasonal mean and cumulative future trend boxplots (dynamical
and reference breakpoints): the method is the same as Figure 5.9 but with dynamical break-
points and reference breakpoints for comparison (see y-axis labels). Letters A to D represents
values and boxplots for mean values trends, letters E to H for cumulative values trends
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Figure 5.28: Him seasonal mean precipitation future trend maps (dynamical break-
points): the method is the same as Figure 5.10 but with dynamical breakpoints.
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Figure 5.29: Him seasonal cumulative precipitation future trend maps (dynamical

breakpoints): the method is the same as Figure 5.10 but with dynamical breakpoints and trends
computed for cumulative values.
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Figure 5.30: HKK seasonal mean and cumulative future trend boxplots (dynamical
and reference breakpoints): the method is the same as Figure 5.27. Letters A and B represents
values and boxplots for mean values trends, letters C and D for cumulative values trends
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5.5 Discussion

In this chapter we applied a set of data-drive approached designed for the definition
(Radially Constrained Clustering) and classification (SoftMax perceptron) of the
meteorological seasons to the region of Hindu Kush Karakoram Himalaya (HKKH),
in present day and future climate, making use of both reanalysis and EC-Earth3
climate model data. Due to the peculiarity of the precipitation pattern in this

region, we were interested in the evaluation of the seasonal cycle of precipitation.

A review on literature led us to the identification of the main dynamical mecha-
nisms driving the precipitation in the area, which are the Indian Summer Monsoon
(ISM) and the Western Disturbances (WDs). We referred to literature for the detec-
tion of the regions in which these phenomena are most relevant, so that we divided
the HKKH region in the subregions of Hindu-Kush Karakoram (HKK) and Himalaya
(Him). HKK is below the influence of both ISM and WDs, and shows a bimodal
seasonal precipitation cycle with a peak in Winter and one in Summer. On the
other hand, the seasonal cycle of precipitation over the Him sector is charctarized
by only one peak in Summer, since it is not reached by WDs. In section 5.3.1 we
showed the main features of these regions are respected in the dataset we used in
this work, ERA5 and EC-Earth3, although some signficant bis exist in the Autumn

precipitation pattern in the climate model.

Thus we analyzed the breakpoints, i.e., the days that mark the transition from
a season to another. Firstly we referred to literature for the identification of the
reference breakpoints. It results that HKK can be mainly described with four seasons
(which we called Winter, Spring, Summer and Autumn in analogy with mid-latitude
seasons) and Him with two seasons (usually defined as Dry and Monsoon). The
breakpoints referring to the monsoonal season (Monsoon in Him and Summer in
HKK) are the best assessed in literature, while the other seasonal transitions are
not supported by the same amount of literature. We showed that, even though two is
the optimal number of seasons for Him, in HKK a four seasons analysis from a data-
driven point of view does not seem to be an optimal choiche (section 5.4.1): indeed,
this leads to the identification of seasons which are not well differentiated. This is
a remarkable point: in the continuation of the work we stated that a suboptimal
choice in the number of seasons could badly affect the analysis. This ill-conditioning
is not only a formal issue. In fact it may entail results that are difficult to interpret,
leading to a bad understanding of the seasonal cycle. Thus, we point out that a
more accurate choice of the number of the meteorological seasons is necessary in
seasonal analysis, which are largely used in Climate sciences. Nevertheless, in order

to get results comparable with literature we continued to use 4 seasons in HKK.
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We thus evaluated the algorithm breakpoints in both regions with RCC on
ERA5 data, and we found results relatively agreeing with reference breakpoints.
This results underlines the adequacy of both the chosen algorithm (RCC) and metric
(Euclidean distance). Indeed, they are capable of reproducing the results found in
literature, which are calibrated to the specific regions, without needing to defining
anything rather than the number of seasons. Nevertheless, a more accurate analysis

of the implication of the choice of the metric should be carried out in followup work.

Then the seasons found with RCC in ERA5 have been used to train the SoftMax
perceptron, which was used to classify the EC-Earth3 dataset. The training and
testing of theSoftMax perceptron showed that it is capable of learning the seasonal
features of the data, and detecting them in fresh new data. Thus, the investigation

of different methods does not seem necessary.

Once the SoftMax perceptron has been trained, it has been used to classify
the EC-Earth3 dataset. An overall analysis of the result shows that, while the
classification in the Him box is stable, in HKK Autumn and Winter are fragmented.
At the light of what we said before, this could be caused by two reasons: 1) the
bias in the EC-Earth3 representation of the seasonal precipitation pattern, with a
third peak in November, 2) the suboptimal choice of the number of seasons. The
first hypothesis is supported by the fact that a spot of Winter days is found in
November, and the second by the fact that the fragmentation is also present at the
seasonal boundaries, suggesting that seasons are not well separated as they appear
to be for example in Spring. This fragmentation tends to shrink in future projection
under SSP5-8.5 scenario. Thus we assumed that the change in seasonal cycle driven
by Climate Change is increasing the differences between these two seasons. This
application shows that the methodology we developed can be used as a tool for the

validation of the seasonal cycle representation in Earth systems datasets.

In the last part of this chapter, we applied the classification performed with
SoftMax for the identification of the dynamical breakpoints. Thus, we used the
dynamical breakpoints for the evaluation of seasons length and for the computation
of the future trends under SSP5-8.5 scenario of precipitation seasonal mean and
cumulated values. We thus compared these results with the ones obtained with
the reference breakpoints. About these results, an overall increase in precipitation
amount is reported with both seasons definitions. This is not surprising, since global
increase in precipitation in all seasons is something well assessed in literature and in
line with what theoretically expected from a global warming perspective. The most
remarkable result we obtained with the introduction of dynamical seasons is the
correction in the intensity of these trends. The seasons associated with the Indian

Summer Monsoon (Summer in HKK and Monsoon in Him) are probably going to
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increase in duration. This implies that mean precipitation values computed with
dynamical seasons are lower than the ones obtained with reference breakpoints. On
the other hand, cumulative values are higher. The opposite is expected to occur in
the Winter season in HKK and in the Dry season in Him. These seasons are going
to decrease in duration, with mean values computed with dynamical breakpoints
higher than the ones computed with reference breakpoints, and cumulative values
lower than the ones computed with reference breakpoints. Once again, this has
not only formal implications. The power of seasonal analysis consists in the fact
that they can condense information about the state and evolution of climate, which
are used, among other things, for the development of strategies of adaptation. A
more correct and complete extraction of this information could lead to a better

understanding of the climate system.



Chapter 6
Conclusions

We started this thesis wondering if the meteorological seasons could be defined in a
way which is more robust and reliable than the heuristic approach which is commonly
used nowadays. This led to the work hypothesis on which the whole work has been
based on, that is to say that seasonality in Earth’s climate system leads to the
emergence of periods within a year with similar statistical behaviour, which are
internally similar, and well differentiated from each other. We also stated that this
assumption is non trivial, since a continuous periodical signal such as seasonality
could not be suitable for this division. In light of the results obtained in the case
study, we can conclude that our work hypotesis was well conditioned. The analysis
performed on the Hindu-Kush Karakoram/Himalaya (HKKH) regions resulted in
the recognition of seasons which are physically meaningful, being able to reproduce
the main physical features of the seasonal patterns that we identified in a review on
literature.

For the practical recognition of the meteorological seasons in climate data, we
decided to rely on a set of machine learning tools. The choice of machine learn-
ing was driven by the fact that these kind of algorithms are being deployed in a
wide range of applications, included climate sciences, with remarkable results. In
our case, we expected to obtain from machine learning algorithms a recognition of
the meteorological seasons which is physically meaningful and well understandable,
without the need of human supervision. We selected two algorithms: the Radi-
ally Constrained Clustering (RCC) for the recognition of seasons, and the SoftMax
perceptron for the evaluation of their evolution in different periods and/or datasets.

With the application of these algorithms to the HKKH case study, we obtained
multiple interesting results. Firstly, the evaluation metrics for the RCC on ERA5
suggested a correction for the total number of seasons to use for the description
of the seasonal patterns of total precipitation and surface air temperature, with

respect to the number used in our literature references. Forcing the clustering to
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perform using the number of seasons found in literature resulted in a definition of
meteorological seasons which is similar to the reference one. We can thus conclude
that the RCC is a good tool for the definition of the meteorological seasons, and
that the metric we chose (Euclidean distance) is suitable for this purpose.

Then we used the SoftMax perceptron for evaluating the evolution of these
seasons in the global climate model EC-Earth3. We focused on how this dataset
reproduce the seasons with respect to ERA5, and how these seasons will change in
the future, under the SSP5-8.5 scenario. Here we found that the Soft Max perceptron
is able to identify a bias in the seasonal pattern of precipitation which is well assessed
in literature. For the evolution in the future, we evaluated the length of the seasons
and we compared the trends of two seasonal metrics (daily average precipitation
and seasonal cumulated precipitation), computed with both the seasons found in
literature and the ones obtained with the SoftMax perceptron. We found that the
length of the seasons in HKKH is expected to change considerably in the future,
and that this comports some corrections on the trends we evaluated. We do not
have enough elements to state if these correction are correct, and we leave these
kind of evaluation for followup works. On the other hand, we can conclude that
approaching the division in seasons using ’static’ seasons, that is to say a division
which is the same through different periods, is a wrong choice, especially with the

changes that are projected in future climate due to climate change.

We can conclude this thesis stating that a more robust and rigorous approach to
the meteorological seasons with respect to the one which is commonly used nowadays
is possible. Meteorological seasons are entities which can be defined in several ways
depending on the variables and locations we take into account, and their recognition
through specific, physically-driven approaches, could result in an onerous work. The
data-driven way using machine learning algorithms has proven to be reliable, easy to
implement, and able to give a better understanding of what meteorological seasons

are and how they will change in the future.
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