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SUMMARY

Extreme weather events are causing severe threats all over the world, posing increasing environmental and
socio-economic risks, which are amplified by the effect of climate change. Coastal areas are particularly
vulnerable to extreme marine and weather events (e.g., storm surges, extreme rainfall) given the high
exposure of population, settlements, and economic activities at the land-sea interface.

Therefore, understanding the main risk factors of these extreme events is necessary to implement suitable
disaster risk management measures, which could guide coastal authorities and policy-makers in improving
the resilience of coastal communities to natural hazards and climate change.

Nevertheless, identifying the triggering factors of such risks has always been challenging, since the complex
dynamics driving the coastal systems. In this regard, in order to unveil relations between hazards and their
cascading effects, in recent years, Machine Learning (ML) algorithms have gained popularity due to their
ability to extract information from a huge quantity of data, by overcoming the limits of traditional physical-
mathematical models. However, the outcomes of these advanced methods, to be reliable, must be
corroborated through traditional statistical analysis and scientific reasoning.

Based on these needs, this Thesis is aimed at investigating the factors that play a key role in the occurrence
of damages (e.g., damages to people, buildings and infrastructures, agriculture, tertiary sector) generated by
extreme weather events in the coastal municipalities of the Veneto region, focusing on the 2009-2019
timeframe. Accordingly, the aim was achieved by reviewing the scientific literature concerning the state-of-
the-art ML algorithms implemented for assessing risks and impacts caused by natural hazards in coastal
areas, as well as by applying traditional and ML-driven techniques of data science to find relations between
the analyzed factors and the damage occurrences.

In particular, the scientometric and the systematic review revealed ML algorithms based on decision trees
(e.g., Bayesian Network and Random Forests) as the main implemented models, given their high predictive
ability and easy interpretation. Moreover, the majority of these models adopted, as input variables,
indicators related to sea surface level, wave regime and precipitation.

Building upon the findings of the review, a comprehensive data analysis process was applied to the dataset
made available from the AdriaClim project, in order to explore trends and relations between the collected
atmospheric, oceanographic and territorial indicators with extreme weather-driven damages, both at the
regional and local scale of the Veneto coastal area. Two data analysis techniques were used for accomplishing
the study: a Random Forest (RF) algorithm for selecting the most important features related to the damage
occurrence, and traditional Exploratory Data Analysis (EDA) both for an initial pre-analysis of the dataset and
to evaluate the results of the RF.

The pre-analysis of the dataset was performed to identify the criticalities and main characteristics of the data,

allowing a better design of the RF algorithm. Specifically, the obtained information regarding the presence



of similar patterns between the damage trends and those of some hazard indicators, and the presence of
significant differences in the hazard and territorial indicators at the local scale, served to test several
combinations of input variables for implementing the RF.

Consequently, after having balanced the initial dataset, due to the high discrepancy between the number of
observations with and without damages, the set-up RF model was run gaining a F1 score of 95% and
identifying sea surface height, precipitation, temperature, and wave characteristics as the most relevant
features. Then, a further examination of these variables at the regional scale, through EDA techniques,
permitted to assess their effective relevance when damages occurred, confirming the reliability of the RF.
Additionally, for some of the selected features (e.g., mean and maximum sea surface height, significant wave
height), it was possible to find threshold values associated with the damage occurrence and their relative
annual and seasonal variations, information that could be helpful for the application of early warning
systems. However, the same analyses executed at the municipal scale revealed different local characteristics
for some hazard indicators recorded in presence of damage.

Overall, the developed methodology has pointed out some interesting relationships between the triggering
factors and the damages occurred in the case study area within the 2009-2019 timeframe. These findings can
pave the way for guiding decision-makers and local stakeholders in the development of suitable disaster risk
reduction and climate adaptation measures, aimed at increasing the resilience of coastal communities to
extreme weather events.

Finally, although the research encountered some limits due to the type and the resolution of the data,
especially concerning the damage data and the exposure and vulnerability indicators, the results and the
criticalities evidenced by this study could be useful for the implementation of advanced ML algorithms (e.g.,

Graph Neural Networks, Artificial Neural Networks) intended to predict damage occurrences in coastal areas.



OBJECTIVES AND MOTIVATIONS

In the last decade, extreme weather events have occurred with an increased frequency and intensity,
worldwide and particularly in coastal areas (Seneviratne et al.,, 2012; EEA, 2022), presenting significant
challenges to understanding, evaluating, and predicting the environmental risk (Zhou et al., 2022).
Moreover, the regions at the land-sea interface have recorded higher costs for damages and losses caused
by such extreme events than inland zones (Li et al., 2022; EEA, 2022b), costs that, due to climate change, are
expected to increase in the upcoming years (Coronese et al., 2019; Roudier et al., 2016). The reasons behind
these severe consequences are determined by the greater number of natural hazards and socio-economic
assets in coastal areas. In particular, these zones are affected by both atmospheric and marine hazards, which
amplify the magnitude of the effects when combined. Additionally, they are inherently more vulnerable and
exposed to risks (Nicholls et all., 2007) due to the several anthropogenic pressures, including population
growth, tourism and numerous buildings and infrastructures.

Hence, coastal communities are increasingly requiring mitigation and adaptation plans to improve their
resilience against the growing number of natural disasters.

In order to implement suitable disaster risk management, guided by the principles of the Sendai Framework
for Disaster Risk Reduction 2015-2030 (UNISDR, 2015), the identification of the triggering factors of the
damage risks is of paramount importance. However, the comprehension of such risks has always been
demanding because of the multiple complex and non-linear interactions driving the coastal systems.
Building on these needs and for overcoming the limits of traditional physical-mathematical models, in recent
years, Machine Learning (ML) algorithms have gained popularity in several natural hazard-related issues
(Arinta & Andi, 2019; Wendler-Bosco & Nicholson, 2022), including extreme weather events (Qi & Majda,
2020). Specifically, ML models are powerful tools that can extract information from the input dataset by
identifying structures, patterns, and relationships among variables. Moreover, even when working with a
huge quantity of data and variables (Kuhn & Johnson, 2013), they are able to determine the most relevant
factors driving the risk (Genuer et al., 2010).

On the other hand, these algorithms have been described as “black boxes”, capable of providing excellent
predictions, but whose outcomes should be accurately evaluated, considering the physical and
environmental aspects (Jones & Linder, 2015). Consequently, the combination of traditional data analysis
techniques (i.e., descriptive statistics and Exploratory Data Analysis - EDA) with ML methods has been
suggested for providing a comprehensive understanding of the investigated phenomena (Hafen & Critchlow,
2013). This is particularly important in the context of extreme weather events occurring at the land-sea
interface, since they are determined by complex dynamics, exhibiting peculiar characteristics in every
manifestation.

Based on this knowledge background, the main objectives of this Thesis are:
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ii)

reviewing the scientific literature concerning the state of the art of ML algorithms implemented
for assessing natural hazard risks in coastal areas;

applying a series of data science techniques, which combine traditional statistics with ML
methods, to identify the most influential factors in damage occurrences caused by extreme
weather events, for the coastal municipalities of the Veneto region within the 2009-2019

timeframe.

These main objectives are reached by subdividing the research in more detailed operative tasks, which

constitute the theoretical, methodological, and operative assets for this Thesis. In particular:

Scientometric and systematic literature review regarding the peer-reviewed publications, of the last
twenty years, dealing with the application of ML methods to assess coastal risks caused by natural
hazards;

Description of the case study area in terms of geomorphological, territorial, and climatological
characteristics, as well as collection of atmospherical, oceanographical, territorial and damage data
for the case study area within the 2009-2019 timeframe;

Development of a conceptual scheme for guiding the prediction of damages, given a set of indicators,
through the application of ML methods;

Design a methodological process of data analysis, which combines traditional EDA techniques with a
Random Forest (RF) algorithm, to detect trends, most relevant features and relations between
boundary conditions and damage occurrences, both at the regional and local scale;

Discussion of the results, to provide the environmental understanding of the factors that have driven

the occurred damages, by highlighting the strengths and limitations of the study.

The Thesis was developed in the frame of the Interreg IT-HR AdriaClim project (www.italy-

croatia.eu/adriaclim), in collaboration with the Foundation Centro Euro-Mediterraneo sui Cambiamenti

Climatici (CMCC, www.cmcc.it). The project aims to support, in the cooperation area, the development of

science-based regional and local climate change adaptation plans based on up-to-date meteorological and

oceanographical information, derived from advanced observing and modelling systems for the Adriatic Sea.
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THESIS STRUCTURE

This Thesis is structured in two main sections: Section A provides a picture of the theoretical background at
the base of Machine Learning (ML) methods for assessing risks and impacts caused by natural hazards in
coastal areas; Section B describes the process and the techniques of data analysis applied for evaluating the
factors that contributed to the manifestation of damages, during extreme weather events, in the case study

area of the Veneto coastal municipalities.

Specifically:

Section A, following a brief introduction of the main concepts and terminologies in the ML field, performs a
scientometric and systematic review of the scientific literature in relation to the state of the art of ML
applications for assessing risks in coastal environments caused by natural hazards, such as extreme weather

and climate change.

Section B, on the other hand, is organized following subsequent phases. In particular, the description of the
investigated case study area (i.e., the Veneto coastal municipalities) outlines the geomorphological,
territorial, and climatological characteristics, providing information regarding the data collection. The
terminology adopted in the field of risk assessment is then introduced, operationalizing the conceptual
scheme designed to identify the main relationships between hazard, exposure and vulnerability factors
contributing to determining risk. The scheme is then used as a starting point to investigate the role of each
risk factor in the damage manifestation, by implementing a data analysis methodology combining traditional
EDA techniques with a RF model. Accordingly, the main results of these applications are discussed in order
to detect relations between hazard and territorial indicators with damage occurrences, both at the regional

and local scale.

Conclusions aim at providing a comprehensive summary of the results obtained from the data analysis
process, applied to identify the main factors which influenced the manifestation of extreme weather-driven
damages in the investigated area, highlighting criticalities and limitations of the research as well as future

improvements.
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SECTION A: Review of Machine Learning algorithms to assess risks caused by
natural hazards in coastal areas

1. State of art of Machine Learning applications to assess impacts caused by
natural hazards at the land-sea interface

Natural hazards have always been a source of risk for human communities. However, in the last decades,
climate change has intensified the occurrence of these phenomena both in frequency as well as in magnitude
(Lopez et al., 2015), and future projections reveal a worsening of the current conditions (Roudier et al., 2016).
Coastal areas are even more affected by such disruptive events due to the strong interplay between
atmospherical and marine hazards. Moreover, these regions have an inherent high exposure and
vulnerability to risk, determined by the elevated concentration of natural and socio-economical assets (e.g.,
population, infrastructures, economical activities). Therefore, to support policymakers and government
authorities in identifying suitable management strategies to cope with the increasing manifestation of
damaging events, a deep understanding of the factors contributing to coastal risks is required.

In recent years, ML methods have gained popularity to predict short-term risks caused by natural hazards.
They have been exploited for their ability to extract information from the data by identifying structures,
patterns, and relationships among variables (Wendler-Bosco & Nicholson, 2022), and to overcome the issue
of working with a huge quantity of data (Kuhn & Johnson, 2013), by selecting the most important predictors
and discharging the not relevant ones (Genuer et al., 2010).

Additionally, new developments are implementing ML methods to evaluate the best mitigation and
adaptation strategies toward natural extreme events (Milojevic-Dupont & Creutzig, 2021; Biesbroek et al.,
2020; Huntingford et al., 2019), serving as important tools for decision-makers. Nevertheless, these kinds of
studies, especially if combined with long-term climate change scenarios, are still very few (Zennaro et al.,

2021).

In the frame of this thesis, in order to acquire an overall understanding of the state of the art of ML methods
applied in coastal environments to assess the risks of natural hazards, a detailed review of the existing
publications has been conducted, through scientometric and systematic analysis, by evaluating the evolution
and the limitations of this topic. Accordingly, the following sections, after a brief description of the main
terminology adopted in the ML field (Section 1.1), describe the methods applied for carrying out the
scientometric and systematic review (Section 1.2) and present the relative results and the main findings

(Section 1.3).
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1.1.  Machine Learning: definition and characteristics
Machine learning (ML), defined by Arthur Samuel in 1959 as the “field of study that gives computers the
ability to learn without being explicitly programmed”, represents a branch of Artificial Intelligence (Al) that
implements algorithms capable of learning their parameters from data by finding statistically significant
patterns among them (Awad, 2015).
There are three main categories of machine learning algorithms: supervised learning algorithms,
unsupervised learning algorithms, and reinforcement learning algorithms (Heidenreich, 2018).
Supervised learning algorithms are algorithms that try to detect the relations between input variables (often
referred as “features”) and output variables (often referred as “labels”) using labeled examples (often|
referred as “samples” or “data points”), i.e. examples for which both the input and the output variables are
known. In supervised learning algorithms the optimum parameters of the model are selected by finding the
values that minimize the loss function (i.e. the distance between known and predicted labels) on the train
set. Supervised learning comprehends two distinct types of methods namely regression and classification. In
regression algorithms the output variables are continuous; examples of regression problems can be the
forecasting of weather parameters, the estimate of natural hazards’ impacts, and the prediction of future
carbon emissions trends (Kumar, 2022). On the other hand, classification methods estimate the class to which
the input value belongs to; examples of classifiers can be models that predict the expected flooded areas as
a consequence of the sea-level rise (Park & Lee, 2020), the change of land cover due to earthquakes and
tornados (Volke & Abarca-Del-Rio, 2020) and many others. Most supervised learning algorithms, like Support
Vector Machines, Neural Networks, Decision Trees, Random Forests, and Bayesian Networks can be used for
both regression and classification problems.
Unsupervised learning includes all those algorithms which draw inferences and find patterns from input data
without the knowledge of labeled outcomes. The main unsupervised learning algorithms are clustering
methods, which aim to detect the presence of clusters among the data.
In Reinforcement Learning the model trains itself continually, through trial and error processes, to acquire
from the past the best possible knowledge to make accurate decisions; the main method falling in this ML

category is the Markov Decision Process.

The main important feature of ML is the capacity to estimate a previously unknown relationship between
input and output data that can be used to estimate the output of new input data. In order to assess the
quality of the estimated relationship, the input data are divided into three sets: a training set, used by the
algorithm to estimate the parameters of the model, a validation set used to compare different algorithms
and to tune the hyperparameters, and finally, a test set, once the hyperparameters have been tuned, to
verify if the machine has well learned the patterns or relationships among the data (algorithm performance).
Finally, in the ML’s terminology, there are two important concepts: bias and variance. Bias represents the

inability of a ML method to capture the true relationship between the variables, while variance indicates the
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change in the model’s results if the model itself is trained with different portions of the training dataset
(Gutta, 2020). If a model, trained with one dataset, has a low bias but high variance, it is said to be overfitted,
a model is said to be underfitted if it cannot capture the relations among the variables (high bias). The best

model is the one having low bias and low variance.

1.2.  Review methods

1.2.1. Data collection

The bibliometric research of peer-review literature published between 2001-2021, related to the state of the
art of machine learning methods for assessing the impacts of natural hazards in coastal areas, was performed
by consulting as a source of information the open-free Scopus database (Elsevier; http://www.scopus.com).
Scopus is among the largest curated abstract and citation databases, with high precision and recall (Baas et
al., 2020). The wider range of scientific publication coverage (Darko et al., 2019) allows the selection of
targeted publications through the formulation of a query in which the research keywords are specified. In
addition, the bibliographic data can be exported in the R environment for the scientometric analysis. The
query formulated in the frame of this review, schematized in Table 1 and reported extensively in ANNEX I,
was structured in four blocks expressing the main concepts behind this research, which were related to the
methodology, the study area, the presence of scenarios, and the typology of hazards/risks. In each block, the
keywords were identified to capture the broad spectrum of publications in the context of ML methods
applied in coastal environments to assess natural hazard impacts. Specifically, the four blocks were linked
with the boolean operator AND, whereas the keywords internally to each block were linked with the boolean
operator OR, in this way, publications containing at least one keyword for each block were retrieved.

The application of the query to “title, abstract and keywords” of all the papers present in the Scopus database
(search date: 5™ March 2022) selected 651 publications. Then, the records of the retrieved publications were
exported in a BibTeX file (by keeping all the information regarding ‘citation’, ‘bibliography’, ‘abstract &
keywords’, ‘funding details’, and ‘other’) to be uploaded into the bibliometrix R Package (R version 3.6.1,

Bibliometrix package version 3.2.1; Aria & Cuccurullo, 2017) for a more in-depth investigation of the results.

Table 1: Scheme of the formulated query to retrieve the publications related to the research topic

Type of method Type of Scenarios Type of hazard/assessment endpoints

study area
("ML" OR "machine learning") OR "coast*" OR  ‘"climate "erosion" OR ("water quality" OR "turbidity" OR
("deep learning") OR ("AlI" OR "marine*" change" OR "eutrophication") OR "storm surge" OR ("sIr" OR
"artificial intelligence") OR OR "sea" "scenario*" "sea level*") OR "extreme event*" OR "pluvial
("decision tree" OR "DT") OR flood" OR "flood*" OR "inundation" OR "drought"
("random forest" OR "RF") OR OR "heat wave*" OR ("risk*" OR "vulnerability" OR
("Bayesian network" OR "BN") "exposure" )
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1.2.2. Scientometric analysis

Scientometrics was defined by David J. Hess in 1997 as a “quantitative study of science, communication in
science and science policy”, aiming to analyze the bibliographic records of a research topic to provide an
overall picture of the current knowledge, the relative evolution and gaps (Chen, 2017; Darko et al., 2019),
through a quantitative-based analysis, in order to be less influenced by the results’ interpretation given by
the researchers (De-Toledo et al., 2022).

The scientometric analysis of the investigated topic was performed through the open-source bibliometrix R-
package, developed in 2017 by Massimo Aria and Corrado Cuccurullo for quantitative research and science
mapping of literature review, created out of the need to have an effective tool for summarizing the
information of the increasing academic publications. To favor the use of bibliometrix, biblioshiny (a R Shiny
app) was designed to provide an easy interactive web interface.

Bibliometrix enables the implementation of numerous high-quality routines which can be gathered in three
groups: i) data collection, to import bibliographic databases such as Scopus in R environment; ii) data
analysis, comprehending both descriptive analysis and science mapping, this latter one related to networks
of bibliographic coupling such as co-citation, collaboration, and co-occurrence analyses; iii) data visualization,
which allows a better understanding of the given information such as the identification of the principal
themes of the topic (Aria & Cuccurullo, 2017). The use of bibliometrix tool, in this review study, has revealed
the main trends and evolutions of publications dealing with ML for assessing natural hazards’ impacts in
coastal areas, providing a detailed overview of the most important themes and dynamics of the field (results

reported in Section 1.3.1).

1.2.3. Systematic review
A systematic review is a secondary research methodology, which aims to synthesize and evaluate the best
available scientific findings of a specific field of research, by clearly answering the question of the study (Cajal
et al., 2020). In the frame of this research, the systematic review was conducted to summarize and facilitate
the understanding of the publications, related to the investigated topic, retrieved from the Scopus database
by applying the keywords query specified in Section 1.2.1.
To provide a complete and transparent reporting of the systematic review, the PRISMA (Preferred Reporting
Iltems for Systematic reviews and Meta-Analyses) statement was adopted (Moher et al., 2009), whose
guidelines were devised to facilitate the selections of the relevant papers during the review process. The
steps followed for obtaining the papers reported in Section 1.3.2 were:

i collection of bibliometric records through Scopus database as described in Section 1.2.1;

ii. screening of papers by reading the title and abstract to eliminate the publications not pertinent to

the topic of study (e.g., papers dealing with maritime traffic or off-shore incidents, studies not

applying ML algorithms);
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iii.  screening of the papers obtained from the previous point, by reading the methodological section, to
remove publications not compliant with the eligibility criteria of the review (e.g., studies forecasting
only the evolution of the hazard sources like sea-level rise);

iv. reading of the full text of the papers to keep only the most appropriate and relevant publications for
the scope of this review, hereafter addressed as “key papers”;

v. classification and discussion of the key papers through a set of devised comparison criteria aiming at
simplifying the understanding of the publications, by defining the type and the scope of the applied
ML algorithm, the spatial scale of the analysis, the type of evaluated risks (e.g., coastal inundation,
coastal erosion), the adopted variables of hazard, exposure and vulnerability, the specific receptors
under investigation and, finally, the implementation or not of climate-change, socio-economic and

management scenarios.

1.3. Results of the review

1.3.1. Results of the scientometric analysis

The selection of publications (specified in Section 1.2.1), related to ML applications for assessing risks caused
by natural hazards in coastal environments, identified 651 papers for the 2001-2021 timeframe. These
articles were analyzed through the Biblioshiny app (Aria & Cuccurullo, 2017), which allows both to draw some
descriptive information related to the sources, the authors, and the type of documents of the selected
publications, as well as, to analyze the science mapping in terms of conceptual (relations between words or
concepts), intellectual (relations between different nodes to understand the evolution of a topic), and social
(relations between authors, institutions and countries) structures characterizing the review topic (Forliano
et al., 2021). Specifically, in the following paragraphs, the most comprehensive bibliographic metrics are
reported, which are: i) the annual scientific production; ii) the most relevant disciplines; iii) the most
productive countries; iv) the collaboration networks for different time slices (i.e., 2001-2006, 2006—2011;
2011-2016; 2016—-2021); v) the analysis of the most frequent keywords; and vi) the keyword co-occurrence
networks for different time slices (i.e., 2001-2006, 2006—-2011; 2011-2016; 2016—-2021).

Annual scientific production

The annual scientific production analysis reported in Figure 1 provides a comprehensive understanding of
the number of papers, annually published, related to the application of ML methods for assessing natural
hazards’ impacts in coastal areas. By considering all the set of publications under investigation, for the 2001-
2021 timeframe, over the years, there has been a continuously increasing trend (annual growth rate: 21.92%)
with the exceptions of some years (i.e., 2008, 2014, and 2019) where the publications slightly decreased from
the antecedent year. However, Figure 1 clearly shows how the production started to considerably increase

only from 2011 (18 publications), revealing an exponential trend from 2016 (37 publications; 2016-2021
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annual growth: 33.69%). In particular, publications of 2019 (53) nearly tripled in 2021 (158). The rising
number of publications over the years reflects the increased interest of the scientific community in exploiting
ML methods to investigate natural hazards’ effects in coastal areas. The interest was also due to some
limitations of physical-mathematical models to provide an overall comprehension of the system in a cost-
effective way, as well as, from the urgency to formulate mitigation and adaptation solutions against the

magnification of climate change-related phenomena.

Annual Scientific Production

150-

100

Articles

2001 2003 2003 2007 2008 2011 2012 2015 2017 2019 2021
Year

Figure 1: Annual scientific production of the publications dealing with the application of ML methods for assessing natural hazard
risks in coastal environments within the 2001-2021 timeframe

Most relevant disciplines

The topic of ML methods applied for assessing natural hazard consequences in coastal areas is very broad
and involves a variety of publications focused on specific themes, embracing different disciplines often
interrelated with each other. In relation to the 651 publications retrieved from the Scopus database, Figure
2 reports the top ten subjects that have mainly contributed to incrementing the knowledge of the topic.
Specifically, Environmental Sciences is the most productive discipline (279 papers), which was expected given
its strong relation to the studied topic. It is followed by Earth and Planetary Sciences (212), Engineering (149),

and Agricultural and Biological Sciences (143). Detached from the five most productive subjects, there are
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Computer Science (95), Social Sciences (72), Mathematics (51), Biochemistry, Genetics and Molecular Biology

(36), Medicine (35), and Energy (25).

Most productive countries

The analysis of the most productive countries indicates the status of the research topic in different areas of
the world. The map in Figure 3 visually represents the countries that have contributed more to the knowledge
of the investigated topic; in the map, the shade of blue of a country is proportional to its number of
publications (i.e., the darker the blue intensity is, the more productive a country is). In Bibliometrix R package,
the publication frequency of the different countries is obtained by summing, for each country, the number
of affiliated authors.

In the 2001-2021 timeframe, 77 countries and 589 different institutions contributed to publishing the 651
papers of the analyzed dataset.

As it can be seen from Figure 3, the most productive countries have ample coastal areas in their territory, as
expected since the specific topic was filtered for the zones at the land-sea interface. Nevertheless, these
countries have different issues related to natural hazards and therefore, with a further investigation, it can
be found that specific themes have been developed by the different countries. In particular, the United States
is the most productive country with a number of publications (440) which is more than double of that of Cina
(185), which is in second place. Specifically, the USA is strongly impacted by extreme events (e.g., tornados,
hurricanes) which are intensifying because of climate change and which are putting at stake multiple assets
(e.g., infrastructure, houses) and activities (e.g., agriculture, transportation), by generating severe socio-
economical damages (Collins et al., 2022). China's main focuses are related to the issue of flooding as a
consequence of sea-level rise, a condition that threatens the majority of the population, concentrated in low-
lying coastal areas (Yang et al., 2019). In the third place, in terms of productivity, there is Australia (146
papers), where the main theme is related to corals’ vulnerability and their tendency to bleach because of the
increasing ocean temperature and acidification. The following positions are covered mostly by European
countries, including UK (136), Italy (102), Canada (93), Germany (86), Finland (63), Spain (62), and France
(61). The presence of many European Mediterranean countries in the first positions (i.e., Italy, Spain, and
France) could be explained by an increasing interest in the research topic due to a significant intensification
of extreme events in the Mediterranean area. Finally, an important role is covered by north-latitude countries
(e.g., Canada, Finland but also Netherland and Norway) where, generally, the management of fishery and
aquaculture industries is the objective of the study, due to the risk posed by the modification of the fish

stocks in terms of abundance and distribution.
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Country Frequency

Country Scientific Production

Usa 440
China 185
Australia 146
Uk 136
Italy 102
Canada 93
Germany 86
Finland 63
Spain 62
France 61
Netherlands 45
Norway 41
Brazil 37
India 31
Belgium 25
Portugal 24 Figure 3: Country scientific production (2001-2021)
Sweden 24
Greece 21
New 21
Zealand

Japan 20

Collaboration networks for different time slices (i.e., 2001-2006, 2006-2011; 2011-2016; 2016-2021)

The analysis of the countries’ collaboration networks is obtained by aggregating, for each country, the
number of authors who are affiliated, for the same paper, with at least one other co-author from a different
country. In the maps of Figure 4, the blue color intensity of a country is proportional to the number of its
international collaborations (i.e., the darker is the blue, the more collaborations a country performs),
whereas the width of the edge, linking two countries, is proportional to the number of papers published in
collaboration between the authors of those countries. For the entire analyzed timeframe (2001-2021) USA
results to be the most collaborative country, especially with the UK (18 frequency), Canada (17), Australia
(15), and Cina (14). The UK is in second place in terms of collaboration, mainly with Cina, Germany, France,
and Australia. It is interesting to see how the collaborations between countries have changed through time
by dividing the analyzed timeframe into four time slices (i.e., 2001-2006, 2006—2011; 2011-2016; 2016—
2021). In the first period (2001-2006; Figure 4a) collaborations were only six, with a maximum frequency of
2 (between USA-Australia and USA-New Zealand), involving just Anglo-Saxon countries except for Italy and
Germany. However, in the following years, consistently with the growth of the scientific publications in the
field of ML for assessing natural hazards in coastal areas, there has been an increment of the countries
involved in collaborations as well as in the publications’ frequency, especially with an increase of the Asian

countries (precisely, Cina and India) if confronted with the first investigated years (i.e. 2001-2011).
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Figure 4: Collaboration maps under four time slices: a) 2001-2006; b) 2006-2011; c¢) 2011-2016; d) 2016-2021

Analysis of the most frequent keywords
The most relevant keywords, associated with the topic of ML methods for evaluating natural hazard impacts
in coastal areas, are here examined. The unit of analysis is the author’s keywords, which identifies the three
to five keywords selected by the author to summarize its study. The keywords analysis has the potential to
reveal the evolution and the trend of the themes associated with the main topic, both for the present and
the past (Pesta et al., 2018). Concerning the selected 651, the most frequent author’s keywords are reported
in a word treeMap (Figure 5).

‘Climate change’ and ‘Machine learning’ are the most recurrent keywords, appearing respectively 16% and
9% in the selected publications, this result is also derived from the choice of using these words for the search
query applied in the Scopus database (Section 1.2.1). However, they are key concepts of the topic under
investigation so, their higher frequency reflects a correct selection of the 651 publications. In the following
positions, two main ML algorithms are found namely ‘bayesian network’ (6% frequent) and ‘random forest’
(3% frequent). Their frequencies increase if synonym words are considered, such as “belief bayesian
network” and “classification”. These methodologies are representative of the rising widespread of these
algorithms for assessing natural hazard impacts in order to find relations among the input variables. In fact,
the identification of such relations is not always straightforward and this complexity has hindered the results
of traditional physical-mathematical models, requiring alternatives such as ML algorithms. Then, among the
most frequent keywords, also the word ‘risk’ and its declinations (e.g., ‘risk-assessment’, ‘risk analysis’) recurs

very often and that is indicative of the wide implementation of ML methods for assessing a variety of climate
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change-related risks. Concerning the hazards or their triggering sources, ‘sea-level rise’ is the most frequent
(3%), since it is posing under threat the majority of the coastal areas in the world, both directly (i.e., expected
sea-level rise due to ice melting and seawater expansion), or indirectly (i.e., sea-level rise associated to storm
surges events). Other frequent words hazard-related are ‘water quality’ and ‘eutrophication’ since the
increasing water temperature, combined with anthropic pressures, is putting at risk the health of the marine
environment.

Other frequent keywords are ‘remote sensing’ (14%) and ‘gis’ (2%), and that is indicative of the diffusing
implementation of satellite data for retrieving information, often in a more effective manner in terms of cost,
time, and spatial coverage than traditional methods (e.g., in-situ measures). Finally, in the most 50 frequent
keywords, words like ‘decision support systems’, ‘adaptation’, and ‘resilience’ occur, which are revelatory of
the several studies, among the pool of 651 papers, dealing with the implementation of ML algorithms for
detecting management strategies to adopt for increasing the resilience of coastal areas, or for formulating
effective adaptation and mitigation plans to reduce the consequences of natural hazards’ effects. Given these
results, it must be specified how they could be partly biased since for 118 of the 651 papers Scopus did not
report the author’s keywords, and so the analysis performed through Bliblioshiny considered only 533

publications.
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Figure 5: Keywords TreeMap

Keyword co-occurrence networks for different time slices (i.e., 2001-2006, 2006—2011; 2011-2016; 2016—
2021)

The analysis of the keywords co-occurrence Network (KCN) is carried out in order to map the knowledge
structure of the studied topic (Esfahani et al., 2019), and to inquire how different themes are linked together.
Therefore, this survey provides additional information relative to the keywords TreeMap (Figure 5), that is

the connection between the different keywords. A KCN is the graphical representation of a co-occurrence
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matrix, that visually conveys the frequency with which two keywords appear together in different

publications (in the frame of this review, having set the parameter ‘minimum edge parameter’ equal to 1,

only co-occurrent keywords present in at least two publications were selected). In the KCN, each keyword

represents a node of the network, whereas the edge (or link) connecting two keywords vehicles the co-
occurrence between that pair of keywords (Radhakrishnan et al., 2017). There are some graphical
characteristics that guide the interpretation of the KCN:

i) the biggerer is a node, the more the keyword co-occurs with other words;

ii) the distance between two nodes is inversely proportional to the number of times those keywords
appear together in different publications (i.e., the more two keywords are closed, the more
frequently they co-occurred);

iii) in the network, different colors represent different clusters, which means different themes
comprehended in the same research topic;

iv) the centrality of a term/cluster in the network indicates the ability of that term/cluster to influence
other clusters in the network and its interdisciplinary nature, conversely, the peripherical position
of a term/cluster symbolizes the scarce influence on the network, or the development of that theme
separately from the rest of the network.

The analysis of the KCN for different time slices allows to understand how the themes, in the domain of ML

methods for assessing natural hazard impacts in coastal areas, have evolved through time. In the first

timeslice (2001-2006; ANNEX II; Figure A), no interesting information appears: there is only one cluster
dominated by the keyword ‘microbial transport’, relative to the risks of contamination from maritime
transport. In the second time slice (2006-2011; ANNEX Il; Figure B) ‘climate change’ keyword is introduced
in the network, with the highest number of co-occurrences with other keywords. However, the climate
change cluster, mainly associated with ‘gis’ and ‘DDS’, is isolated, without edges with the other two most
relevant clusters, one related to ‘DDS’ in coastal environments especially for ‘water quality’, and the other

related to ‘bayesian network’ for ‘oil spill’ detection. During the 2011-2016 timeframe (ANNEX II; Figure C)

the number of thematic clusters increases (11) likewise the edges between different keywords.

Nevertheless, the two most important clusters which are ‘climate change’ and ‘risk assessment’ are still

separated one from the other. Specifically, ‘climate change’ cluster has intra-relations involving mainly ‘sea-

level rise’ and ‘invasive species’ (threat emerging from the increasing temperature) and shows some level of
co-occurrence with the cluster related to ‘water quality’ and ‘algal bloom’ (which is, again, associated to the
increasing temperature). The second most important cluster sees the ‘bayesian network’ implemented for

‘risk assessment’ (like in the second time slice 2006-2011). The third most important group, separated from

the others, is related to maritime hazards due to ship traffic, with a strong intra-cluster co-occurrence

between ‘hazardous chemical’, ‘chemical spill’, and ‘bayesian network’. The network changes completely its

appearance for the fourth and last time slice (2016-2021; ANNEX IlI; Figure D), as a consequence of the abrupt
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development of the topic and the relative number of scientific publications (Figure 1) in these last years. In
this time slice, ‘machine learning’ enters the network and together with ‘climate change’ is the most
frequent co-occurrent keyword. ‘Machine learning’ and ‘climate change’ lead their respective clusters,
whose centrality and proximity show how the two themes have become extremely interdisciplinary and
interrelated among them. In particular, in the ‘climate change’ cluster, along with words indicating the
common two effects of it (i.e., ‘sea level’ and ‘global warming’), ‘resilience’ and ‘adaptation’ appear, which
are generally the objectives of the investigated publications. Moreover, in this same cluster, two of the most
threatened environments/habitats are found namely ‘coral reefs’ (jeopardized by the increasing
temperatures and ocean acidification) and ‘Antarctica’ (where the erosion risk of the shoreline, left free from
ice, is increasing). Concerning the ‘machine learning’ cluster, together with ‘bayesian networks’, another ML
algorithm gains traction namely ‘random forest’. The contemporary presence of ‘remote sensing’ and
‘sentinel 2’ indicates the rising use of satellite data in the ML field, often applied to monitor ‘eutrophication’
which is posing several risks in coastal areas. Finally, these two main clusters are in relation to the one
concerning the theme of ‘risk assessment’, revealing a general tendency to implement ML algorithms for
evaluating the risks posed by climate change. The considerations made for the last time slice are similar to
the ones that can be made for the KCN applied to the entire timeframe (2001-2021) (Figure 6), this fact

highlights how the knowledge of this review topic has been developed only in these recent years.

ol spll

- bayesian network

rrisk assessment

Figure 6: Keywords co-occurrence network for the 2001-2021 timeframe
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1.3.2. Results of the systematic review

In this section, the results of the systematic review are discussed in detail. In particular, the application of
the PRISMA statement (Moher et al., 2009) on the 651 publications retrieved from the Scopus database
(Section 1.2.1), through a series of skimming passages (specified in Section 1.2.3), has brought to the final
selection of 17 publications. These selected publications are specified as “key papers” of the research topic
concerning the application of ML methods for assessing risks of natural hazards in coastal environments.
Table 2 summarizes the main characteristics of the 17 key papers in relation to the comparison criteria
adopted for guiding the selection, which permitted to clarify i) the scale of analysis of the study and the ii)
case study area; iii) the applied ML algorithm and iv) relative aim; v) the type of natural hazard and vi) relative
hazard variables; vii) the variables of exposure and vulnerability; viii) the receptors; ix) the type of data; and

finally, x) the application of climate change scenarios or xi) management and socio-economic scenarios.
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Table 2: Key papers selected from the systematic analysis

Reference

Jager etal.
(2018)

Plomaritis
etal.
(2018)

Sanuy &
Jiménez
(2021)

Park & Lee
(2020)

Scale of
ELELS

A BAYESIAN
NETWORK
APPROACH FOR
COASTAL RISK
ANALYSIS AND
DECISION MAKING

Local

USE OF BAYESIAN
NETWORK FOR
COASTAL HAZARDS,
IMPACT AND
DISASTER RISK
REDUCTION AT A
COASTAL BARRIER
(RIO FORMOSA,
PORTUGAL)

Local

PROBABILISTIC
CHARACTERIZATION
OF COASTAL
STORM-INDUCED
RISKS USING
BAYESIAN
NETWORK

Local

PREDICTION OF
COASTAL
FLOODING RISK
UNDER CLIMATE
CHANGE IMPACTS
IN SOUTH KOREA
USING MACHINE
LEARNING
ALGORITHMS

National

Location

North
Norfolk
(United
Kingdom)

Faro Becah
(Ria
Formosa,
Portugal)

Tordera
delta
(Spain)

South
Korea

Type of ML-
method

Bayesian
Network

Bayesian
Network

Bayesian
Network

K-nearest
neighbor;
Random
forest;
Support
vector
machine

Model aim Hazard type

i) To estimate, for any storm
scenario, the percentage of
affected receptors, through
the prediction of the hazard’s
impact on the receptors and
the relative damages; and ii)
to evaluate several DRR
measures

by storm surge

Overwash and
erosion due to
storm surge

i) To predict the impacts
caused by erosion and
overwash hazards on
infrastructures and houses;
and ii) to evaluate several
DRR measures

Inundation and
erosion due to
storm surge

To assess storm-induced risks
(due to erosion and
inundation) at a local scale,
considering also the location
of the receptors

Flooding due to
sea-level rise

To analyze the future risk of
coastal flooding (2030, 2050,
and 2080) in order to support
decision-making for ICZM

Flooding caused

Hazard
variables

Maximum
water level;
Maximum
wave height

Tide above
the mean sea
level;
Maximum
significant
wave height;
Wave period

Significant
wave height;
Wave period;
Wave
direction;
Water level;
Event
duration

Mean tide;
Daily
maximum
rainfall
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Exposure/vulnerability
VELELIES

Receptors

Residential damages; Residential
Commercial damages; properties;
Risk to life; Saltmarsh Commercial
damages properties;
People;
Saltmarsh
Erosion state of Houses and
houses; Overwash Infrastructures
state of houses
Distance to inner ~ 4000
beach limit; Area of receptors

the receptor's location

Slope; Urban area; Coastal area

Grassland

Type of data
(measured,
satellite,
modeled)

Modeled (2D
TELEMAC and
SWAN

models); socio-
economic data;

Modeled
(Xbeach)

Historical time
series data;
modeled
(Xbeach)

Measured;
modeled (for
future)

Management scenario /
Socio-economic scenario

Climate change
scenario

DRR measures:

1) Construction of an
extended flood wall; 2)
Increasing the height of
the flood wall in
combination with a
movable barrier; 3)
Placement of a series of
display boards to
sensibilize the population
regarding the storm surge
risks

RCP8.5 (for 2060)

DRR measures: 1) Beach
replenishment; 2) House
removal; 3) Improvement
of communication
channels with residents; 4)
Combination of different
measures

Scenarios of
shoreline retreat
due to
background
erosion
(evaluation of the
inundation and
erosion impacts
within +5, +10
and +20 years
from the baseline
scenario)

RCP 4.5/8.5 (from
the 2030s to the
2080s)



Reference

Maina et
al. (2021)

Jakariya et
al. (2020)

Zahura et
al. (2020)

IDENTIFYING
GLOBAL AND LOCAL
DRIVERS OF
CHANGE IN
MANGROVE COVER
AND THE
IMPLICATIONS FOR
MANAGEMENT

ASSESSING
CLIMATE-INDUCED
AGRICULTURAL
VULNERABLE
COASTAL
COMMUNITIES OF
BANGLADESH
USING MACHINE
LEARNING
TECHNIQUES

TRAINING MACHINE
LEARNING
SURROGATE
MODELS FROM A
HIGH-FIDELITY
PHYSICS-BASED
MODEL:
APPLICATION FOR
REAL-TIME STREET-
SCALE FLOOD
PREDICTION IN AN
URBAN COASTAL
COMMUNITY

Scale of
ELELS

National

Local

Local

Location

Western
Indian
Ocean

Bangladesh

Norfolk,
Virginia
(USA)

Type of ML-
method

Random
Forest

Linear
regression;
Bayesian
ridge
regression;
Regression
random
forest;
Regression
XGB
algorithm;
Extremely
randomized
tree
regression

Random
Forest

Model aim

To investigate the impacts of
environmental and human
drivers on changes in
mangroves, by considering
also future climate scenarios

Identification of significant

factors which influence the and extreme

crop yield vulnerability weather
conditions
To replace physics-based Urban flood

models with ML methods for
a real-time flood prediction,
at a street scale, of the
surface water depth on the
road

Hazard type

Climate change

Climate change
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Hazard
variables

CDD
(Consecutive
dry days);
Tx90p
(Percentage
of days when
warm days
>90th
percentile);
Sea level
anomaly;
Tide; Coastal
erosion

Humidity;
Temperature;
Rainfall

Total,
maximum,
and
cumulative
rainfall; Tide
level

Exposure/vulnerability
VELELIES

Receptors

Nearshore coastal Mangroves
typology; Land (proxy for the
development index; mangroves’
Access to market status: NDVI
(human pressure) and VClI)
Crop disease; Soil Crop yield
quality; Water

availability; Crop loss;

Availability of rain;

Adaptive capacity

Elevation; Topographic = Roadway

wetness index; Depth
to water index

Type of data Climate change
(measured, scenario
satellite,

modeled)

Satellite; RCP8.5
modeled (2050/2060)
Stakeholder

questionnaires;
historical data

Measured;
modeled;
crowdsourced
data

Management scenario /
Socio-economic scenario




Reference

Caietal.
(2018)

Rohmer et
al. (2021)

Praharaj et
al. (2021)

Taramelli
etal.
(2020)

MODELING THE
DYNAMICS OF
COMMUNITY
RESILIENCE TO
COASTAL HAZARDS
USING A BAYESIAN
NETWORK

UNRAVELLING THE
IMPORTANCE OF
UNCERTAINTIES IN
GLOBAL-SCALE
COASTAL FLOOD
RISK ASSESSMENTS
UNDER SEA LEVEL
RISE

ESTIMATING
IMPACTS

OF RECURRING
FLOODING

ON ROADWAY
NETWORKS:

A NORFOLK,
VIRGINIA CASE
STUDY

ASSESSING PO
RIVER DELTAIC
VULNERABILITY
USING EARTH
OBSERVATION AND
A BAYESIAN BELIEF
NETWORK MODEL

Location

Scale of
ELELS

Lower
Mississippi
river basin
(USA)

Local

Global

Norfolk,
Virginia
(USA)

Local

Po Delta
area (Italy)

Local

Type of ML-
method

Bayesian
Network
(optimized
with a
Genetic
Algorithm
and trained
with the
Expectation-
Maximization
EM learning
algorithm)

Random
Forest

Linear
regression
classification;
Regression
trees;
Random
forest

Belief
Bayesian
Network

Model aim

To study the
interdependencies of 10
resilience variables on the
global resilience community
(addressed in terms of
population change)

To evaluate the influence of
different variables'
uncertainties regarding flood
hazard in the determination
of two risk metrics namely
expected annual damage
(EAD) and adaptation costs
(AC) for a coastal dyke

To determine the impacts of
low-intensity recurring
flooding on the
transportation sector

(addressed in terms of "traffic

volume")

To investigate the
vulnerability of the Po Delta
coastal area (in terms of

ecological, morphological and

social factors) in relation to
the future sea-level rise

Hazard
variables

Hazard type

Extreme events Hazard threat;

(e.g., % flood zone
hurricanes); area
anthropic

hazards (e.g.,
urbanization)

Coastal flooding
due to sea-level
rise

Hydrological
data (Rainfall,
flood
incidents,
tidal level)

Pluvial flooding

Vertical
velocity;
Wave height;
Wave
frequency;
Wave regime;
Sea-level rise

Sea level rise
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Exposure/vulnerability
VELELIES

Receptors

Socioeconomic and
demographic variables
(employment rate, %
owner-occupied house
units, population
density, % housing
units built before
1970, % female
householder); Damage
per capita; Distance to
the coastline; %
agricultural land

Community
resilience
(addressed in
terms of '%
population
change')

Coastal dyke

Roadway data (n° of
lanes, speed limits, per
lane capacity); Traffic
flow data (Trip counts,
speed, time of day,
type of day)

Roadway

Vulnerability variables Coastal zone
(Protected natural

area, resilience index); area

Pathway variables (extended
(dune, coverage factor, 1000 m
protective distance, inland)

geomorphology, global
surface water dynamic,
surface water
occurrence change
intensity, water
transition, elevation)

under the RICE

Type of data
(measured,
satellite,
modeled)

Climate change
scenario

Measured;
data form the
literature

Modeled (from RCP2.6, 4.5, 8.5;

DIVA -Dynamic Magnitude of the

Interactive regional sea-level

Vulnerability rise; r-largest

Assessment annual value

model) (rGEV);
Subsidence in
delta region
(SuBS)

Crowdsourced

data;

measured;

Satellite SLR scenarios

(Copernicus (IPCC 2014): up to

data) 2100

Management scenario /
Socio-economic scenario

Socio-economic
development (SSP): 1-5;
Global population
distribution (POP); Assets-
to-GDP ratio (A:GDPr);
Logistic depth-damages
curves (DF)



Reference

Ferreira et
al. (2019)

Tolo et al.
(2017)

Tolo et al.
(2015)

EFFECTIVENESS
ASSESSMENT OF
RISK REDUCTION
MEASURES AT
COASTAL AREAS
USING A DECISION
SUPPORT SYSTEM:
FINDINGS FROM
EMMA STORM

RISK ASSESSMENT
OF SPENT NUCLEAR
FUEL FACILITIES
CONSIDERING
CLIMATE CHANGE

ENHANCED
BAYESIAN
NETWORK
APPROACH TO SEA
WAVE
OVERTOPPING
HAZARD
QUANTIFICATION

Location

Scale of
ELELS

Faro Becah
(Ria
Formosa,
Portugal)

Local

Nuclear
Power
Station of
Sizewell B,
(East
Anglia,
United
Kingdom)

Local

Local Liverpool
Bay (Irish

Sea)

Type of ML-
method

Bayesian
Network

Bayesian
Network

Enhanced
Bayesian
Networks
(ie.,
Bayesian
Networks
enhanced
with System
Reliability
methods)

Model aim

i) To determine the potential
impacts of storms, in coastal
areas, in terms of overwash
and erosion hazards on
houses and infrastructures;
and ii) to assess the
performance of DRR
measures (evaluated through
the effectiveness index)

To evaluate the exposure risk
of a spent nuclear fuel stored
in a facility to flood hazards.
Specifically, the BN aims to
model the interaction
between extreme weather
conditions and the
technological installation, as
well as the propagation of
failures within the system
itself by considering also
possible human error

To evaluate the expected risk
of wave overtopping on a
seawall structure, due to
future sea-level rise

Hazard type

Overwash and
erosion due to
storm surges

Flooding due to
extreme events
and future sea-
level rise

Wave
overtopping
hazard (due to
SLR)

Hazard
variables

Wave height;
Peak period;
Water level

Natural
variables
(Extreme
precipitation,
sea water
level, sea
wave period,
sea wave
height);
Failures
directly
triggered by
natural events
(drainage
system,
flooding
surrounding,
outfall, wave
overtopping)

Wind wave
peak period;
Swell peak
period;
Significant
wind wave
height;
Significant
swell height;
Surge level;
Tide level; Sea
level rise; Still
Water Level
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Exposure/vulnerability
VELELIES

Distance of the
house/infrastructure
from the coast (to
determine damage or
potential damage);
Morphology (to
consider nourishment
DDR)

On-site substation,
external power grid,
emergency hydrant
system, emergency
power supply, offsite,
reservoirs, closure,
planned outrage,
unplanned outrage,
onsite AC, cooling
system, spent fuel
exposure, emergency
supplies, delay in
reaction, human error

Characteristics of the
slope of the seawall
(sea wall inclination,
slope roughness, crest
level, mean
permissible discharge);
Incident significant
height; Incident peak
period

Receptors

Houses;

Infrastructures

A spent
nuclear fuel
stored in a
facility

Hypothetical
seawall

Climate change
scenario

Type of data
(measured,
satellite,
modeled)

Modeled (2D
TELEMAC and
SWAN
models);
measured
(related to
Emma storm)

SRES A1B
(medium-
emission
scenario) for
2015,2055,2099

Modeled

Historical time-

series data; A1B (medium
modeled (for emission) and
the future) A1f1 (high

emission) for
every decade
between 2020
and 2100

B1 (low emission),

Management scenario /
Socio-economic scenario

DRR measures: 1) Beach
nourishment including the
construction of a circa 45
m wide berm; 2) Removal
of the houses placed at
the ocean side of Faro
Beach; 3) Beach
nourishment (1) + house
removal (2)

Scenarios were evaluated
for 4 types of the Power
Plant subsystems (On-site
Flooding, Cooling System,
Spent Fuel Exposure,
Flooding in Surroundings).
Specifically for the Spent
fuel exposure risk, other
forced scenarios have
been evaluated (Cooling
system failed, station
flooded, failure drainage
system, surroundings
flooded, human error,
human error and failure
drainage system) forced
with different what-if
scenarios



Reference

Xie et al.

Title

EVACUATION ZONE

Scale of
ELELS

Local

Location

Manhattan,

Type of ML-
method

Random

Model aim

To confront different ML

Hazard type

Hazard
variables

Exposure/vulnerability
VELELIES

Receptors Type of data
(measured,
satellite,

modeled)

Measured;

Climate change
scenario

RCP 4.5 and RCP

Management scenario /
Socio-economic scenario

Change of demographical-

(2017)

Bolle et al.
(2018)

Moftakhari
etal.
(2017)

MODELING UNDER
CLIMATE CHANGE:
A DATA-DRIVEN
METHOD

AN IMPACT-
ORIENTED EARLY
WARNING AND
BAYESIAN-BASED
DECISION SUPPORT
SYSTEM FOR FLOOD
RISKS IN
ZEEBRUGGE
HARBOUR

TRANSLATING
UNCERTAIN SEA
LEVEL PROJECTIONS
INTO
INFRASTRUCTURE
IMPACTS USING A
BAYESIAN
FRAMEWORK

Local

Local

(NYC, USA)

Zeebrugge
harbour
(Bruges,
Belgium)

Two sites:
Orange
County and
Marin
County
(California)

Forest;
Classification
Tree

Bayesian
Network

Bayesian
Model
Averaging

methods (e.i., RF and DT) in
finding relationships between
grid cell-specific features
related to evacuation (i.e.
geographical, evacuation
mobility and demo-economic
features) and current
hurricane risk zone
categories; the most
performant ML method is
then used to predict future
hurricane evacuation zones
under sea level rise scenarios

i) To assess the damage to
infrastructure due to
flooding; and ii) to evaluate
several DRR measures

The model aims to combine
surge predictions (NTRs),
from 8 climate models, with
tidal predictions and sea-level
rise projections to statistically
characterize the expected
lengths of roads exposed to
coastal flooding

Flooding due to
hurricanes

Overwash due
to storm surge

Flooding due to
sea-level rise
and storm surge
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Average
elevation
above sea
level

Peak water
level;
Significant
wave height

Hourly water
level

Evacuation mobility
(distance to the
nearest evacuation
center, distance to the
nearest subway
station, distance to the
nearest bus stop,
distance to the nearest
expressway); Demo-
economic features
(total population,
population below the
poverty level,
population with
disability);
Geographical
characteristics (DEM,
distance to the coast)

Location of: Roads,
Houses, Containers,
Roll-on/off areas,
Buildings, Gas areas,
Bluk, Railways

Transportation
system modeled
resilience (=

ability of the
transportation

systems to

maintain a

certain level of

service under

hurricane

evacuation

scenarios)

Roads; Modeled
Furniture;

Industries;

Cars; Houses;

Containers

Coastal roads
series;
modeled
(storm surge

modeled from

8 climate
scenarios)

Historical time

8.5 for 2050/2090

50th and the 95th
percentile of the
projected mean
sea level under
the climate
scenario RCP4.5
and RCP8.5;
prediction for the
near future
(1998-2063) and

mid-future (2018-

2083)

economic features for
2050 /2090 (growth rates
of different age groups are
considered constant for
the analyzed future
timeframe)

DRR measures:

1) Master Plan for Coastal
Safety; 2) Mobile flood-
barriers; 3) Moving assets
out of risk



Given the complexity of coastal systems, ML methods have started to be implemented for capturing the
relations between the natural and anthropic pressures, aiming to understand the consequences of such
interactions and to support decision-makers in developing suitable adaptation and mitigation plans.
Specifically, 4 of the 17 selected papers (Bolle et al., 2018; Ferreira et al., 2019; Jager et al., 2018; Plomaritis
et al., 2018), all developed under the frame of RISC-KIT (Resilience-Increasing Strategies for Coasts toolKIT)
project, aimed to estimate damages due to overwash or/and erosion, originated by storm surge events. The
general idea behind this group of papers was the use of a Bayesian Network (BN) as a surrogate of more
complex physical-mathematical models (which require an elevated computational cost), for translating
marine offshore hazards into damages at the coastal receptors, by following the source-pathway-receptor
(SPR) concept. In this context, the BN served as a decision support system (DSS), since different disaster risk
reduction (DRR) measures were tested in the network to evaluate how they affected the hazard impacts on
the receptors. Specifically, the general scheme of the BN proposed in these studies comprehended 5
categories of variables which were ‘boundary conditions’, ‘receptor type’, ‘hazard’, ‘impacts’ and ‘DDR
measures’.

Jager et al. (2018) and Bolle et al. (2018) specified the extreme event boundary conditions in terms of ‘peak
water level’ and 'maximum significant wave height’, which were calculated for different storm scenarios
through a model train that exploited 2D TELEMAC and SWAN models. Jager et al. (2018), by studying the
surge risks at the North Norfolk coast, considered four receptors (e.i., residential properties, commercial
properties, people, and saltmarshes), which were affected by different hazards (e.g., flood depth, wave
height) and which experienced diverse consequences in terms of damages and risks. Moreover, three DRR
measures were tested, which comprised both physical constructions (e.g., a flood wall, a mobile dam) as well
as information campaigns to inform the population about the dangers of storm-surge intensification in the
area, hoping to increase the adoption of property-level protections. Bolle et al. (2018) implemented a similar

scheme for the Zeebrugge harbour (Belgium), where the receptors were buildings and infrastructures (e.g.,

Hazard Boundary
Conditions

Types |

Local
Hazards

/
RR measures and Strategic
Alternatives

~

Figure 7: BN developed by Bolle et al. (2018) for the case study of Zeebrugge harbor (Belgium)
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railways, roads, gas stations, houses, buildings, containers; Figure 7), whose relative nodes in the BN were
divided into four bins, representing the four different districts of the port. In this study, all the receptors were
affected only by the ‘maximum inundation depth’ hazard, and the damage was calculated with a damage-
depth curve.

The main structure of the BN proposed in the previous two studies was adopted also by Plomaritis et al.
(2018) however, in this case, the BN was trained with 124 synthetic data obtained from the morphodynamic
Xbeach model, simulating not only the overwash but also the erosion hazard at Faro beach (Ria Formosa,
Portugal). The impacts of the hazards on the receptors (i.e., houses and infrastructures) were evaluated
under different DDRs measures, showing how, for the considered storm surge events, beach nourishment
was the most efficient DDR measure, followed by house removal. Nevertheless, in case of a larger wave
period, overwash to houses could have been efficiently reduced only with a combination of the two
measures. In the frame of Plomaritis et al. (2018) research, Ferreira et al. (2019), for the same case study
area, trained the BN with data similar to those of Emma storm, which severely hit the Portuguese coast in
February-March of 2018. The BN performed well in the estimation of damages if confronted with in-field
observations, confirming the erosion hazard to be the most dangerous under storm conditions. In addition,
for some of the DDR measures implemented by Plomaritis et al. (2018), Ferreira et al. (2019) calculated the
correspondent effectiveness index. In relation to Emma Strom, the index was almost 100% for overwash
when the combination of beach nourishment and house removal was applied, whereas for the single erosion
hazard the beach nourishment alone had an effectiveness of 54-100%.

Sanuy & Jiménez (2021) further perfectioned the studies presented so far, by training the BN with 179 real
storms data, consisting of hourly evolution of wave parameters, decreasing the uncertainty associated to the
use of synthetic events. That allowed the construction of a fully probabilistic BN for characterizing the risk of
erosion and inundation at the Tordera delta (Spain). For each storm simulation, the resulting hazard map was
transformed into a risk value at each one of the almost 4000 receptors. The novelty of the study resigned
also in splitting the BN into two parts, one part considering the variability of the forcing conditions (solving
the source—consequence relationships) while the other the spatial distribution of the receptors (by linking
the receptors’ impacts to the receptor’s locations). Moreover, the study revealed how under future
morphological scenarios of the coast, affected by decadal-scale background erosion, an intensification and
extension of both erosion and inundation are expected (inundation risk increased from 2-6% to 8-13%,

erosion risk increased from 1-3% to 3-7%).

Among the 17 papers, there was a group that dealt mainly with flooding risk, caused by rapid events like
extreme weather events and storm surges, or due to the increasing sea-level rise. Park & Lee (2020)
developed a risk probability map for evaluating flooding in the coastal areas of South Korea. Different
classification ML methods were confronted, namely k-nearest neighbor (kNN), random forest (RF), and

support vector machine (SVM) with radial basis function (RBF), to predict the presence or the absence of
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flooding, taking as input the variables of tide, rainfall, elevation, slope, urban area, and grassland. In relation
to observed values, kNN performed better (gaining the highest value of ROC-receiver operating
characteristic) while rainfall and tides resulted being the most influential predictors. These findings were
used to forecast future flooding risk under the RCP 4.5 and RCP 8.5 scenarios, which revealed an increased
flooding risk over time, especially on the southern coast. The author suggested that the inclusion of the
shoreline changes, as an input variable, could increase the reliability of the forecast.

Then, several publications evaluated flood risks related to specific receptors (Moftakhari et al., 2017; Praharaj
etal., 2021; Zahura et al., 2020; Xie et al., 2017; Tolo et al., 2017; Tolo et al., 2015), which were mainly related
to the transportation sector. This is probably due to the importance of this sector in driving national and local
economies, however, being extremely vulnerable to natural disasters and requiring elevated costs to be
repaired, studying the causes of damages is fundamental to prevent them.

In particular, Moftakhari et al. (2017) adopted a Bayesian Model Averaging to weight an ensemble of eight
climate models for storm prediction which, combined with predicted astronomical tides and mean sea level
rise projections, allowed to forecast the roadway flooding under RCP 4.5 and RCP 8.5 for near-future (1998-
2063) and mid-future (2018-2018) at two Californian sites: Orange County and Marin County. The length of
road subjected to flooding, for each analyzed scenario, was estimated by considering the amount of time
that the total water level TWL (sum of astronomical tide height, mean sea level, and surge component)
exceeded the mean sea water level MSWL. The results revealed that if no adaptation measures were put in
place, the risks intensified over time.

Both Praharaj et al. (2021) and Zahura et al. (2020) implemented a RF to forecast, spatially and temporally,
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Figure 8: Traffic volume prediction process developed by the study of Praharaj et al.

(2021) a more localized evaluation of the
same impact, real-time data from a crowdsourced database were used. For both the analyses, the general
structure of the model (Figure 8) was to use input variables related to roadway characteristics (hnumber of
lanes, speed limit, and the lane capacity), flow traffic data (trip counts, speed, time of day and type of day)

and hydrological data (rainfall, tide level, flood incident data) to estimate the effects on traffic volume. In
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predicting the traffic volume, RF performed better among the other tested algorithm (i.e., linear regression
and decision tree), having the lowest value of RMSE (Root-mean-square deviation) and NRMSE (normalized
RMSE). Moreover, the comparison of two RFs, one considering the hydrological data and one not considering
them, revealed how the first had a better predictive capacity, emphasizing the importance of the hydrological
data in the prediction. The results showed how, during flood events, freeways saw a decreased traffic,
whereas principal arterials manifested an increased traffic volume.

Zahura et al. (2020) tested the efficiency of RF to serve as a surrogate of the TUFLOW model, to reduce the
computational cost for forecasting real-time flood prediction at street level. 20 storm events were used for
the RF, trained to find relations between environmental (i.e., tides, rainfall) and topographic features with
hourly water depth simulated by the TUFLOW model. Specifically, two RF were trained, one considering only
the data of the road segments most prone to flood risk, the other one considering all the roads of Norflok
city, showing a better prediction for the first case.

Indicators regarding the transportation sector can be integrated to predict the future evacuation zones in
Manhattan city under different climate change scenarios (Xie et al., 2017). Specifically, the study of Xie et al.,
(2017) firstly confronted RF and DT (decision tree) to predict the evacuation zone categories due to hurricane
risk over the baseline scenario, by considering geographic features (distance to the coast, average elevation
above sea level), evacuation mobility (distance to the nearest evacuation center, distance to the nearest
subway station, distance to the nearest bus stop, distance to the nearest expressway) and demo-economic
features (total population, population below the poverty level, and population with disability). Then, the RF,
which performed better in terms of accuracy and Kappa statistics, was used to predict how the evacuation
zone categories will change under future sea-level rise scenarios for RCP 8.5 and RCP4.5 in the 2050s and
2090s. The results displayed a widespread increase of the zones at the higher risk. Therefore, this kind of
application can help to better design evacuation planning, as well as to improve the resilience of the
transportation system (i.e., maintain the service despite the intensification of hazards).

In the retrieved pool of papers, other types

MeanPermissibleDischarge

of receptors, affected by flooding, were
TimeScenario
investigated. Tolo et al. (2015) proposed a CrestLevel
EmissionScenario

framework for predicting the level of
overwash (Figure 9), due to sea-level rise, Svarpopkg
on seawall defenses, by adopting an Figure 9: Overview of the reduced BN proposed by Tolo et al.

(2015) for assessing the overwash hazard over a hypothetical
Enhanced Bayesian Networks (EBNSs) seawall

methodology, which integrated a Bayesian Networks (BNs) with a Structural Reliability method.
The same author Tolo et al. (2017) elaborated a BN model to assess the risk exposure of a spent nuclear fuel,
stored in a facility pond subject to flood hazard, an example of Natech risk (natural technological disaster),

whose interactions are still scarcely studied by the scientific community. The model, aiming to evaluate the
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overall risk failure of the nuclear power station of Sizewell B in East Anglia (United Kingdom), was composed
of 37 nodes, divided into three interacting modules: the natural-technological module, to model the effects
of natural events on the nuclear facility and its surroundings; the human operators module, to analyze the
human error; and the technological interface module to consider the effects that natural events could have

on the cooling system or on the emergency one.

The assessment of future coastal flooding is fundamental given the high number of assets present in coastal
regions, but there is the need to understand also the uncertainty of these predictions, in order to support
efficient adaptation plans and avoid maladaptations. Rohmer et al. (2021) investigated the uncertainty of
two risk metrics, namely expected annual damage (EAD) and adaptation cost (AC) of a coastal dyke, in
relation to flooding risk. In the research, the uncertainty of these two metrics, for the years 2020-2100, was
obtained through different combinations of the variables adopted in the DIVA model, which in the study was
replaced by a regression RF, to decrease the computational cost. Then a variance-based global sensitivity
analysis was performed to determine the variables that mostly contributed to the uncertainty of the two
metrics, exhibiting how, for the long-term scenario (>2050), the main uncertainties of the two metrics were

due to RCP-SSP uncertainty.

To adopt suitable management strategies, for increasing the resilience of a community, it is necessary, not
only to identify the uncertainties of a prediction, but also to understand the influence that different stressors
have on targeted receptors. Maina et al. (2021) evaluated the exposure of mangroves, which provide multiple
natural and social-economical ecosystem services, but which are extremely endangered to different human
and natural drivers in the Western Indian Ocean region. The author addressed the status of mangroves in
terms of two indexes, namely NDVI (Normalized Difference Vegetation Index) and VCI (Vegetation Condition
Index), and for both of them, through a RF, he calculated their relations with 11 human and natural variables,
from satellite and spatial databases.
Future scenarios analysis revealed
how, under the RCP 8.5, by 2050,
mangroves resulted to be extremely

compromised, especially because of

2 sea-level rise and drought.
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rise (SLR) scenarios, by considering the interaction of natural and human variables. He adopted a Belief
Bayesian Network where the nodes were divided into four categories (Figure 10): sources (driver factors),
pathway (land cover factors), receptors (land use factors which are resilience index and protected natural
areas), and consequences (vulnerability), by integrating the results in a GIS environment. The results
indicated that under the worst SLR scenario 35% of the study area was in a vulnerable status, where the
spatial heterogeneities of the case study were mainly related to the land use and land cover variables. A
sensitivity analysis demonstrated how the wave regime was the variable mostly influencing the vulnerability.
Jakariya et al. (2020) assessed the vulnerability of three coastal districts of Bangladesh in relation to the
agricultural practice, which is the principal source of revenue in the area. In particular, to find the variables
(retrieved through interviews with the locals) that mainly contributed to the crop yield vulnerability,
referenced in terms of Vulnerability Livelihood Index for agriculture, different ML models were tested. The
Bayesian ridge regression algorithm performed better (highest R?) and was used for the development of an
app in which the farmers could log-in and choose, among the 9 most important selected vulnerability factors,

those requiring immediate intervention from the government.

All these studies were important to acquire information aiming at fostering the resilience of coastal
communities. Cai et al. (2018) explored the interactions between the variables related to community
resilience, to determine the overall disaster resilience against natural hazards. The study focused on the
Lower Mississippi river basin, an area subjected both to intense land-use change, as well as, severely
impacted by hurricanes. A BN, optimized with a genetic algorithm and trained with the expectation-
maximization EM learning algorithm, considered different categories of variables related to the hazard
threat, the regional socio-economy, the environmental characteristics, and disaster damage, to understand
their effect on the overall community resilience, specified in terms of population change. Finally, through the
Junction tree algorithm, a type of belief updating, it was investigated how the key variables influenced
independently the population change, identifying how, for example, distance to coastline or % of
employment rate were inversely proportional to the decrease of population change, whereas increasing

hazard threat or the per capita damages had the opposite effect.

To summarize, the 17 selected key papers showed high heterogeneity in the investigated themes, whose
main characteristics are statistically represented in Figure 11. The systematic review revealed that, up to
now, the core area of the research devoted to the application of ML methods for assessing natural hazards
in coastal communities is focused on estimating flooding risks. Important efforts are made to understand
how natural and human variables interact together, to evaluate, in the end, the risks on different receptors.
In this regard, several studies praised ML methods for overcoming some of the limits of traditional models in
finding relations among the aforementioned variables, since they do not require the knowledge of exact

equations linking the variables themselves.
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a) Scale of analysis b) Climate change scenario (Y/N)

Global; 1

National; 2

N; 8
c) ML method d) Hazard typology
DT: 1 Climate
change; 2
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Coastal
erosion; 3

KNN; 1

Figure 11: Main statistics of the 17 key papers: a) scale of analysis; b) consideration of climate change scenarios; c) type of ML
method; d) hazard typology

That represents a step forward in understanding the dynamics of coastal areas, which are extremely complex
socio-ecological systems.

Accordingly, most of the selected key papers studied these kinds of relations, mainly investigated through
the implementation of two ML algorithms: Bayesian Networks (present in 11 studies) and Random Forest
(present in 7 studies), both applied for their ability to process different data types (e.g., continuous, ordinal,
categorical, Boolean) retrieved from various sources (e.g., in-situ observations, models, satellites).
Moreover, these algorithms were often used as surrogates to replace complex physical-mathematical models
(which are highly demanding in terms of computational cost), proving, in the end, how the combination of
conventional models and ML methods can efficiently give accurate results, which is a pivotal aspect in risk
prediction.

Half of the selected studies evaluated the coastal risks under future climate change scenarios (Figure 11b).

Specifically, it has been demonstrated that, if no mitigation and adaptation measures will be implemented in
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the near future, the risk will increase due to the expected intensification of natural hazards. On the other
hand, the testing of a variety of DDR measures against current and future climate risk has revealed how some
management strategies can effectively reduce the exposure and vulnerability of the receptors.

Finally, the investigated studies outlined their prevalent development at the local level (14 studies), rather
than at higher scales (i.e., national, global). This aspect is due to the fact that hazards’ effects on the land
part of coastal areas depend on geomorphological characteristics of the territory, as well as on the type of
exposed assets, which vary greatly from one place to another. Therefore, a local scale analysis is necessary

for designing effective adaptation plans.
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SECTION B: Data analysis process to assess the factors influencing the damage
occurrences in the Veneto coastal municipalities

2. Characterization of the case study area

2.1. Interreg IT-HR AdriaClim Project
AdriaClim (Climate change information, monitoring, and management tools for adaptation strategies in
Adriatic coastal areas)! is a European research project started in 2020 and funded by the Italy-Croatia Interreg
Cooperation Programme 2014-2020 under the EU Strategy for the Adriatic lonian Region (EUSAIR).
AdriaClim is devoted to supporting the development of science-based climate change adaptation plans, for
increasing climate resilience in the cooperation area, by turning potential threats into economic
opportunities. This aim will be reached by designing mitigation strategies based on high resolution, more
accurate, and reliable climate information for the coastal and marine areas, with particular attention to the
economic sectors and the ecosystem services of the Adriatic region.
In brief, the focuses of AdriaClim project are:

e The building of an up-to-date harmonized base knowledge of meteorological and oceanographical
information, acquired through newly implemented and more accurate observing and modeling
systems for the Adriatic Sea;

e The elaboration of future climate scenarios and methodologies to assess climate change-related
impacts, vulnerabilities, and risks. This step allows the development of maps and indexes for the
nine pilot case studies in relation to the blue economy (aquaculture, tourism), the marine
ecosystems services and Marine Protected Areas (MPA), the coastal towns, and the ports;

e The design of adaptation plans at different spatial scales (i.e., local and regional) to support coastal
authorities and stakeholders in the implementation of suitable management strategies against the
climate change threat.

Furthermore, the project promotes the cooperation between regional actors, by contributing to increasing
both the commitment in planning adaptation strategies and the need to improve climate policies.

This thesis was carried out within the AdriaClim project by implementing a data analysis process for assessing
the factors which influenced the damage occurrences, caused by extreme weather events, in the AdriaClim
pilot case of the coastal municipalities of the Veneto region (ltaly). The study has to be considered as a
preliminary analysis to support the design of ML-methods capable of predicting damages, which was

developed in collaboration with the Euro-Mediterranean Centre on Climate Change (CMCC)2.

L https://www.italy-croatia.eu/web/adriaclim
2 https://www.cmcc.it/it
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2.2. Casestudy area

Veneto region is located in the northeastern part of Italy with a surface area of 18378 km? and a total
perimeter of 1104 km. From the northeast direction, anti-clockwise, Veneto is bordered by Friuli-Venezia
Giulia, Austria, Trentino-Alto Adige, Lombardia, Emilia Romagna, and finally by the Adriatic Sea in the south-
east direction. Specifically, the 169 km of the Veneto coastline (Ruol et al., 2016) overlook the North Adriatic
Sea sub-basin, which is the northernmost region of the Mediterranean Sea (Cushman-Rosin, 2001).

The Veneto coastal area, case study of this thesis, belongs to the provinces of Venice and Rovigo,
comprehending eleven municipalities which are respectively seven for the province of Venice (municipality
of San Michele al Tagliamento, Caorle, Eraclea, Jesolo, Cavallino-Treporti, Venice, and Chioggia), and four for
the province of Rovigo (municipalities of Rosolina, Porto Viro, Porto Tolle and Ariano nel Polesine) (Figure
12). Comprehensively, the coastal municipalities cover a surface of 1573,94 km? with a population that counts

412735 inhabitants (ISTAT, 2021).

Figure 12: Case study area: the coastal municipalities of the Veneto Region

Climatologically, according to the Kéeppen classification, the littoral of the Veneto region belongs to the sub-
continental temperate zone (Barbi et al., 2013), showing the typical mesoclimate of the plain, characterized

by a certain degree of continentality with moderately rigid winters and warm summers. This feature derives
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from its status of transitional region between the continental Central Europe climate and the Mediterranean
one (Lionello et al., 2012). In the coastal areas, the annual mean temperatures are around 14°C, higher than
the average 13°C of the internal zones (Barbi et al., 2013). Precipitations are quite homogeneously distributed
throughout the year, with an average annual value of rainfall between 800 and 1000 mm, and winters that
are slightly dry in comparison to the other seasons. Anyhow, the coastal area, compared to the internal one,
is characterized by fewer rain days, lower rainfall accumulations, yet more days with heavy precipitation

(Barbi et al., 2012).

From a geomorphological point of view, the low-lying coast, fragmented by the presence of seven river
mouths (from north to south: Tagliamento, Livenza, Piave, Sile, Brenta, Adige, Po), presents gentle-slope and
sandy beaches resulting from alluvial plain coasts that evolved during the Holocene in lagoons (i.e., Caorle
lagoon, Venice lagoon, lagoons of the Po River Delta), barrier beaches, deltas, and spits. Moreover, due to
the combined effect of available grain size (fine sand) and the onshore wind regime, coastal dunes are
favorable to be formed (Bezzi et al., 2018).

Additionally, by considering the morphological characteristics, the sedimentary shore can be subdivided into
a northern, central, and southern trait. The northern trait is delimited northward by the Tagliamento river
and southward by the Lido inlet; it comprises straight littoral coasts, where the longshore transport has a
south-westerly direction, increasing progressively from ca. 38,700 m3/y to 99,100 m3/y (Ruol et al., 2018).
The central trait is associated with the Venice littorals (Lido and Pellestrina) with sandy barriers and barrier
islands; it is a convergent site with quite null net longshore sediment transport (Bezzi et al., 2018). The
southern trait comprehends the Po Delta system, the largest wetland area of Italy, covering an area of 610
km? and 60 km of coast, which extends from the Porto Caleri inlet to the mouth of the River Po di Goro (Ruol
et al., 2018), comprising several river outlets and salt marshes (Torresan et al., 2008; Regione del Veneto,
2012).

The natural evolution of the coast has been modified since Roman times to allow human settlement.
However, starting from 1950, the coastal area has been subjected to abrupt urbanization and anthropic
pressure, a condition that, over time, has brought to a considerable change in land use. In fact, the coastal
build-up area showed a progressive increase in the years 1990-2000 and 2006 with a buffer area from the
coastline which incremented from 1 km to 10 km. From 1988 to 2012, 11 km of the coast were altered to
make space for industrial and touristic buildings. Of the 169 km of the Veneto coastline, the 36% (61 km) has
been irreversibly transformed for urban and infrastructural uses, specifically, 4 km are occupied by
infrastructure works, 24 km encompass urban landscapes of high density, and 33 km urban landscapes of

Ill

medium density. The remaining 109 km can be considered still “preserved”, in detail, 49 km are devoted to
agriculture and 60 km have conserved their natural status, mainly because they cover lagoonal and fluvial

estuary areas, which are difficult to urbanize (Legambiente, 2012).
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The cementification of the coast, together with an intensive water withdrawal from the rivers for agricultural
and industrial purposes, the practice of gravel and sand excavation along the riverbeds (i.e., Piave and Po
River; Ferretti et al., 2003), the presence of several dams which intercept the riverine solid load, and
inappropriate dune protections (Bezzi et al., 2018), have decreased the sedimentary budget for beach and
dune accretion. As consequence, coastal erosion is posing a serious issue along the Veneto shoreline. The
erosion phenomenon was denounced already in 1970 by a monitoring study of Studio della Commissione De
Marchi (Rapporto spiagge 2021, 2021) where 20 km of the littoral (15% of the total beaches) were reported
to be under erosion threat. However, in recent times, there has been a period of recovery: if between 1960-
1994 the coastal surface of Veneto was for 17.9 km? in retreatment and for 6.6 km? in accretion, between
1994-2012 the situation changed, with a coastal area in retreatment for 1.9 km? and in accretion for 2.9 km?.
This improvement was possible thanks to the beach nourishment interventions accomplished between 1997-
2011, which brought 7.3 Mmc of sand in the area (MATTM, 2017). Specifically, beach nourishment of the
Veneto coast, between 2003-2015, constituted the 25% (4.8 Mmc of sand) of the national interventions. To
protect coasts from erosion, Veneto region invested 60 million euros between 2014-2018 and 25 million
euros in 2019 for the implementation of structural works, preferring, over time, soft defenses such as
foredune restoration (e.g. ReDune Project) or beach nourishment (Bezzi et al., 2018) instead of coastal hard
defenses (e.g., revetments, seawalls, groins), solutions adopted especially in the 1960s-1970s. Regardless of
these management improvements, according to the National Guidelines on coastal erosion (MATTM, 2018),
in the period 2007-2012, 52 km (37% of the total) of the 169 km of the regional coast, were under erosion
process, with an estimated annual loss of sandy shores of 870.000 m?, a value that increases under storm
surge conditions.

The coastal erosion phenomenon, already accelerated by human pressures, is aggravated by the sea level
rise, which has always been a problem for the area (e.g., Venice lagoon saw an increase of 30 cm in the water
level in just 129 years). In fact, observations related to the sea-level rise variation of the Northern Adriatic
Sea present higher relative sea-level rates (i.e., from 1.2 mm/year in Trieste to 2.5 mm/year in Venice)
compared to the average rates of the other regions of the Mediterranean Sea (ranging from 1.1 to 1.3
mm/year)(Gallina et al., 2019). In particular, in this zone, the relative sea-level rise is due to the combined
effects of natural eustacy and subsidence (Camuffo, 2021). Precisely, eustacy, which is a natural phenomenon
where the sea level increases because of the change in the ocean water volume (due to ice melting, thermal
expansion of the water, or change in the ocean floor consequent to tectonic activity), has been recorded in
the Adriatic Sea since 1890 and, in the last century, it accounted for 10 cm to the sea level increment.
Subsidence is related to the downward vertical movement of the bottom level, which along the Veneto coast
has both natural and human causes (Cavalieri, 2021). Particularly, the natural or geological subsidence is
linked to the type of substrate characterizing the area, mainly made of alluvial and soft soils (e.g., sand, gravel,

and silt), which through time get compacted and originate the sinking of the surface (between 0.7 and 0.9
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mm per year). On the contrary, the human-driven subsidence is related to the exploitation of artesian
aquifers for agricultural and industrial water supply (Brambati et al., 2003), and to the extraction of gas-
bearing water that started in 1930 with the development of the Marghera industrial site (Madricardo et al.,
2019; Gatto & Carbognin, 1981) and continued from 1938 to 1961 in the Po River Delta area (Fabris, 2019).
Considering the subsidence rate affecting the Veneto coastal municipalities, for the period 2009-2020, the
values varied greatly along the coast. However, except for Venice, which had 19.3% of the municipal area
affected by a subsidence rate higher than 2 mm/y, all the others registered values above the 30%, with
Cavallino-Treporti having 91% of the area subjected to downward subsidence, followed by Eraclea and Jesolo
(with values around 60%). The most endangered area is that of the Po Delta system where subsidence has
reached peaks of 3-5 mm/year (Ruol et al., 2018), for these reasons, polders, artificially enclosed by

embankments, have been built.

Coming to the natural and socio-economic resources of the Veneto coastal areas, they present an invaluable
capital. Specifically, these zones comprehend several natural protected areas, regional parks and reserves
(e.g., Bocche di Po, Valle Averto, Delta Po regional park, Bosco Nordio), and areas included in the European
ecological network Natura 2000 specified as Sites of Community Importance (SCI) and Special Protection
Areas (SPA), which are are respectively 14 and 9 (Regione del Veneto, 2012; Ruol et al., 2016).

In relation to the socio-economic capital, the main activities are related to maritime traffic (Venice harbor is
one of the first in Italy for the amount of trade and passenger traffic), fisheries, aquaculture, agriculture,
industrial activities (Porto Marghera zone), offshore activities and tourism (Torresan et al., 2012). The study
of Modica et al. (2017) identifies that, in the coastal municipalities, the primary sector (i.e., agriculture,
forestry, and fishing) covers an average share of 7.42% of the total regional employment, against the 0.59%
of the non-coastal areas. The tertiary sector, comprehending mainly tourism, is very important: it is
particularly associated to the city of Venice, which before the COVID-19 pandemic counted alone more than
25 million visitors per year (Madricardo et al., 2019), as well as to beach destinations, which are chosen for
the high water quality (Rizzi et al., 2016). According to the estimates of Unionmare Veneto, the recreational-

touristic sector of the coastal areas generates 20 billion euros every year.

From this overall picture, the Veneto coastal area, for its characteristics, can be recognized as an extreme-
city-territory (Aerts et al., 2018), subjected to multiple natural and anthropic pressures. However, this
complex system is now threatened by several natural hazards which are intensified by climate change.

Precisely, in relation to climate change in Veneto, from 1993 to 2020, the average temperature rose by
+0.55°C per decade, a higher value compared to the global trend, with summer and autumn seasons
recording the highest increment of +0.7 °C. Rising temperature determines, on one hand, the widespread of
intense rainfalls with strong wind gusts, flooding, and storm surge, on the other, the magnification of

heatwaves which create health risks for the population and droughty conditions. The growing number of
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tropical nights (days with a minimum temperature higher than 20°C) is of +5 days for decade, and days with
rainfall higher than 20 mm have increased by 10% for decade (Regione del Veneto, 2021).
Up to now, the most evident impacts of climate change are related to the frequent and intense

manifestations of extreme weather, which have disruptive consequences in terms of damages and losses

(Figure 13; Figure 14; Figure 15).

Figure 13: Damages to the beaches of Bibione
caused by the storm surge event on the 1st of
November 2021. Source: Il  Gazzettino
(www.ilgazzettino.it)

Figure 14: Damages to the sandy shores of
Cortellazzo beach (Jesolo), caused by the storm
surge event on the 5th and 6th of December 2020.
Source: Il Gazzettino (www.ilgazzettino.it)

Figure 15: Coastal flooding of the Bibione beaches
after the storm event on the 13th of November
2016. Source: Il Gazzettino (www.ilgazzettino.it)
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In addition, these extreme events aggravate the coastal inundation phenomenon, which is one of the
principal natural hazards affecting the case study area. In fact, Veneto's coastal shoreline, being part of the
Northern Adriatic Sea, has always been one of the Mediterranean areas more vulnerable to inundation due
to the presence of: large river mouths; frequent storm surges, driven by meteorological forcings (i.e.,
pressure gradients and wind velocities) (Mel et al., 2014); relatively large tides compared to the rest of the
Mediterranean (average of 1 m of tidal range), due to the semi-enclosed nature of the North Adriatic Sea;
and presence of seiches (Gallina et al., 2019). Among the aforementioned factors, which trigger coastal
flooding, storm surge is the main one, showing, in the Western North Adriatic, larger heights than other
Mediterranean subbasins (Medugorac et al., 2018), with values higher than 1 m during exceptional cases.
Generally, the meteorological conditions that cause storm surge flooding, which is intensifying in recent
years, are associated with low atmospheric pressure, combined with a strong southeast Sirocco wind
(Cushman-Rosin, 2001). Moreover, these conditions can be worsened when combined with low pressure on
the upper Adriatic there is a contemporary high-pressure center on the lower Adriatic, and when,
simultaneously with the Scirocco wind, there is a strong blowing north-east Bora wind: this configuration
creates a convergence of wind-induced marine currents towards the Western Adriatic coast (Di Nunno et al.,
2021). These occurrences of extreme storm surge levels, along the North Adriatic, are expected to increase
in the upcoming years, with events having a return period of 1000 years that could have a surge level higher
than 3.5 m (Rizzi et al., 2017).

Despite rapid extreme events are the class of natural phenomena which is posing higher threats to the region,
another relevant natural hazard is the sea level rise, which, although “naturally” determined by the territorial
characteristics (e.g., subsidence), is magnified by climate change, putting the entire area at risk of
disappearing (Cavalieri, 2021). According to the projections of the 2018 ENEA report, related to the future
inundation of the Mediterranean area (ENEA, 2018), the coast of the Pianura Padana-Veneta (comprising
Friuli-Venezia Giulia, Veneto, Emilia-Romagna) in 2100 will have 5451 km? affected by permanent inundation
risk, and for what concerns Venice harbor, the increase of sea-level rise in 2100 is expected to reach +1,064
m and +2,064 m under storm surges conditions.

Lastly, in recent years, arising problem is that of saltwater intrusion, related to the Adriatic saltwater reaching
the mainland because of the drop of the river water level (e.g. Po River). The issue is aggravated due to the
intensification of the before-mentioned extreme events like droughts and downpours, which combined with
sea-level rise and land subsidence generate a severe condition that is putting at risk several agricultural and

industrial activities, creating serious environmental and socio-economic impacts (Da Lio et al., 2015).
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2.3.

Data collection for the case study area

In order to implement a ML method capable of predicting the occurrence of damages and selecting the most

important factors contributing to the damage itself, a series of heterogeneous input variables, related to

hazard, exposure, and vulnerability indicators are needed.

In the frame of the Interreg IT-HR AdriaClim project, the collected data can be gathered into four classes of

indicators namely, atmospheric and oceanographic indicators (hazard indicators), territorial indicators, and

lastly, damage indicators. Specifically, the metadata of the collected indicators are summarized in Table 3, by

reporting information concerning the: i) indicator class; ii) indicator’s macro-category; iii) data source; iv)

data spatial domain and v) spatial resolution; vi) temporal resolution; vii) data timeframe; and viii) data

format.

Table 3: Summary of the metadata of the collected indicators

Class of Macro-category Data source Spatial domain | Spatial Temporal | Data Data
indicator indicator resolution resolution | timeframe Format
e  Temperature
o Hourly,
o Precipitation ;
Atmospheric e  Humidit daily, Csv
ALMOosp y ARPAV Veneto region | 20 stations monthly, | 2000-2019 ’
indicators e Solar NetCDF
o yearly
radiation
e  Wind
Mediterranean
Sea surface CMEMS area 0.0625*0.0625 | Hourly 2000-2019 NetCDF
Oceanographic
indicators Mediterranean
Wave regime CMEMS area 0.042*0.042 Hourly 2000-2019 NetCDF
Carta
Land use Copertura Veneto region Triennial 2009,2012, Shp
2015,2018
Suolo Veneto
. . ARPAV — . Xlsx
River discharge ARPAE Veneto region Hourly 2000-2019
Carta
Permeability permea@hta Veneto region 2016 Shp
dei suoli
ARPAV
Geomorphology Carta suoli .
. Venet 2019 Sh
(Soil type) ARPAV enetoreglon P
Territorial . DEM INGV . f
indicators Topographic Tinitaly Veneto region 10m 2007 Tiff
Geodatabase
e  Shoreline gestionale
length delle coste Veneto coastal
e  Coastal venete (GCV - area 2013 shp
dunes Progetto
coste)
Geodatabase
gestionale
Subsidence delle coste Veneto coastal | o 2002-2010 | Tiff
venete (GCV - | area
Progetto
coste)
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DPGR
(Decreto del
Damage Presence/absence | Presidente Veneto coastal
occurrence of damages della Giunta zone
Regionale)
documents

Municipality Daily 2009-2021 Xlsx

Atmospheric indicators were provided by ARPAV (Agenzia Regionale per la Prevenzione e Protezione
Ambientale del Veneto)? and were obtained from 9 meteorological stations placed in the 11 municipalities
under investigation, which are located in Bibione (S. Michele al Tagliamento), Lugugnana (Portogruaro,
Caorle), Eraclea, Cavallino-Treporti, Favaro Veneto (Venice), Venice — Istituto Cavanis, Sant’Anna (Chioggia),
Po di Tramontana (Rosolina), and Padron (Porto Tolle). These stations collect data of precipitation,
temperature, humidity, wind, and solar radiation on an hourly or daily basis. Three municipalities of the
investigated case study (i.e., Jesolo, Porto Viro, and Ariano nel Polesine) do not have meteorological stations.
Therefore, the nearest neighbors' rule was applied to infer their atmospheric conditions. Moreover, Venice
counted two meteorological stations but just the data from Istituto Cavani were kept since the dataset was

more complete.

The oceanographic indicators were downloaded from the CMEMS (Copernicus Marine Environment
Monitoring Service) database®, the marine division of the Copernicus Programme of the European Union.
CMEMS provides free data of physical, chemical, and biological oceanic variables derived from satellites, in
situ measurements, or models for the global ocean and the European marine waters. In particular, the
dataset taken into consideration for this study is based on parameters related to the sea surface levels and

state (wave regime).

Territorial indicators provide a picture of the geo-morphological and anthropic characteristics of the territory
under investigation. They can be considered as elements of exposure and vulnerability as well as triggering
factors depending on the context. To retrieve these variables different sources and georeferenced maps were
consulted such as the Carta Copertura Suolo Veneto® for the land use cover, ARPAV and ARPAE® (Agenzia
Regionale per la Prevenzione e Protezione Ambientale Emilia-Romagna) databases for the river discharge,
ARPAV for the soil permeability and soil category chart, the National Institute of Geophysics and Volcanology
(INSV) for the topographical indicators’, the Geodatabase gestionale delle coste venete® for the information

related to shoreline length, dune extensions, and subsidence.

3 https://www.arpa.veneto.it/previsioni/it/html/index.php

4 https://marine.copernicus.eu/it

5 https://idt2.regione.veneto.it/

6 https://www.arpae.it/it

7 http://tinitaly.pi.ingv.it/

8 http://sistemavenezia.regione.veneto.it/sites/default/files/documents/08_Shape/RelazioneGCV-rev-ott2015_0.pdf
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The damages indicators were obtained from the Veneto Region historical database by retrieving the DPGR
(“Decreto del Presidente della Giunta Regionale”) documents®, drawn up after the activation of the “stato di
crisi” at the regional level, which is claimed subsequently to the manifestation of severe weather events on
the territory. These documents reported qualitatively the occurrence of some damages’ typology such as
damages related to flooding in cities, damage to agriculture/fisheries, population problems (e.g., deaths,
displacements), damages to beaches (e.g., shoreline erosion, debris accumulation), damages to
structures/infrastructures and economic activities (e.g., tertiary sector problems). Since the DPGR documents
did not always report the municipalities where a specific type of damage happened, to all the municipalities
involved in an extreme event on a certain date, all the indicated types of damage, for that day, were
attributed. In order to gain more information on the occurrence of extreme events and the relative damages,
two free databases were consulted: the Italian MeteoNetwork database!® and the European Severe Weather
Database (ESWD)!. The MeteoNetwork database was examined to corroborate the DPGR reportings on the
presence of extreme weather events that occurred on the Veneto territory, while the ESWD database was
consulted to obtain more detailed information regarding not only the extreme events but also, when

possible, the damage manifestations.

9 https://www.regione.veneto.it/web/protezione-civile/archivio-emergenze-anno-2021
10 https://www.meteonetwork.it/tt/stormreport/
1 https://eswd.eu/cgi-bin/eswd.cgi
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3. ML-based methodology for assessing damages caused by extreme events
in the case study area: development of a ML-driven coastal risk
conceptual scheme

Natural hazards, such as extreme climate and weather events, have always trigged human communities.
However, in the last centuries, due to the development of human society and economy, the number of assets
that could be adversely impacted has exponentially increased (e.g., population, cities, infrastructures).
Additionally, in the last decades, climate change has intensified the occurrence of these phenomena both in
frequency as well as in magnitude (EEA, 2022), and projections are worsening the scenarios for the upcoming
years. As consequence, the combination of natural and anthropogenic pressures is posing severe risks to
communities all around the world, as documented by the study of Coronese et al. (2019), which revealed an
increment in extreme economic damages due to natural disasters, whose trend is consistent with the climate
change signal.
Accordingly, to mitigate the effects of such events and allow the communities to enhance their resilience
against future hazards intensification, suitable adaptation plans must be adopted to prevent or reduce risks.
In order to determine the best measures to apply, a risk assessment must be performed, which is the process
of anticipating probable damages before they happen (Lee et al., 2020), or in other words, the study of the
causes of possible hazards and probable undesirable events, and the potential damage (or consequences)
that they may produce (Barandiaran et al., 2018).
Therefore, the aim of a risk assessment analysis, in the field of natural hazards, is to identify the disaster risk,
which is defined as the potential loss of life, injury, or destroyed or damaged assets that could occur to a
system, society or a community in a specific period of time (UNDRR, 2022). Moreover, the comprehension of
the disaster risk is reported as the phase with the highest priority in the Sendai Framework for Disaster Risk
Reduction 2015-2030 (UNISDR, 2015). In fact, only if the causes of the risks are known, a disaster risk
management (DRM) can be developed.
Specifically, disaster risk is a function of three elements which are:
e Hazard. A phenomenon that can have negative social and/or economic consequences or cause
environmental damage.
e Exposure. The spatial and temporal coexistence of people or assets (both physical and
environmental) and natural hazards, with the potential to suffer damage.
e Vulnerability. The characteristics and circumstances of a community, system, or asset, which make
them susceptible to the harmful effects of hazards.
In the context of risk assessment, coastal areas are a particular case of study. In fact, according to the last
IPCC report (IPCC, 2022), coastal cities and settlements are in a more precarious situation if confronted with
inland zones, since the presence of a higher population (in 2020, almost 11% of the global population resided

in Low Elevation Coastal Zone), economic activities, and infrastructures.
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Furthermore, in addition to global climatic hazards, the regions at the land-sea interface are affected also by
ocean-driven hazards (e.g., shoreline erosion, harmful algal blooms, severe storms and storm surges,
flooding, tsunamis, and sea-level rise; NOAA, 2022) which, by interacting with the before-mentioned socio-
economic assets, make coastal communities extremely exposed to multiple risks, especially to those
associated with extreme weather events (Li et al., 2022).

Nowadays, in relation to the complex interactions between elements of hazard, exposure, and vulnerability
characterizing coastal areas, an important factor is determined by the responses, in terms of adaptation and
mitigation strategies, adopted by the coastal communities, as emphasized by the framework proposed by
Simpson et al. (2021) and modified for coastal environments (Figure 16). Indeed, the human response factor
is fundamental to determining the level of risk (Calliari et al., 2019), for example, maladaptations or
unsuitable coastal management can compromise, even more, an already fragile condition (Marone et al.,

2017).
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Figure 16: Coastal risk framework (IPCC, 2022)

In the frame of this thesis, a coastal risk conceptual scheme was designed to support the implementation of
a classification ML algorithm capable of predicting the occurrence of damages, caused by extreme weather
events in the Veneto coastal area, which, being part of the Mediterranean region, is particularly exposed to
these phenomena (Pereira et al., 2021). Specifically, given a set of input variables recorded on a certain date,
the ML algorithm aims to predict the presence or the absence of damage.

In the envisioned conceptual scheme (Figure 17), all the different categories of input variables are referred
as “triggering factors” (since a classification ML does not distinguish the distinct categories of indicators i.e.
hazard, exposure, and vulnerability categories), whereas the algorithm’s output (presence/absence of

damage) is mentioned as “response factor”.
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Figure 17: ML-driven coastal risk conceptual scheme

The triggering factors were selected according to the main indicators adopted in the literature for the
prediction and evaluation of coastal damages and risks related to natural events (specified in Table 2), as well
as to available data (specified in Section 2.3). To simplify the comprehension of the motivation that brought
to the selection of the input variables, the triggering factors can be divided into three classes: atmospheric
indicators, oceanographic indicators (which pose additional risks in coastal areas), and territorial indicators.
It is important to remember that all these indicators strongly interact together and so, often, it is not a single
variable that determines the damage occurrence but a combination of factors and their relations (Rutgersson
et al., 2022; Wazneh et al., 2020).

In the following paragraphs, the choice of the indicators is motivated for each class of the triggering factors.

Atmospheric indicators. The selected 21 atmospheric indicators are related to:

Temperature. Temperature is one of the main variables used to assess extreme weather events since its
increase can deeply change the hydrological cycle, affecting the atmospheric water vapor content and
consequently the precipitation intensity (Aleshina et al., 2021). Higher temperature means more energy in
the Earth’s system, which in turn can increase the evaporation and therefore the formation of clouds (UNEP,
2022). Traditional temperature indicators such as the value of the mean, maximum (used to assess heat
stress), and minimum temperature (used to assess cold stress) can indicate annual and seasonal trends. On
the other hand, extreme temperature indicators can provide additional understanding of the pattern of
extreme events, specifically in relation to drought and heatwaves (a phenomenon where high temperatures
occur for several days), whose consequences can provoke several dangers to civil society (e.g. human health),
economy (e.g., agriculture, electrical and technology’s sector) and environment (Crespi et al., 2020). In the
frame of this thesis, the chosen temperature indicators are:

e Mean daily temperature [°C]: average daily temperature;
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e Minimum daily temperature [°C]: minimum temperature in a day;

e Maximum daily temperature [°C]: maximum temperature in a day;

e Number of tropical nights (TR): number of days in a year with a temperature of 20 °C or higher;

o Number of hot days (TX90p): monthly number of days with maximum daily temperature higher than
the 90™ percentile of the maximum temperatures, based on a mobile window of 5 days in the
reference period 1991-2020;

o Number of heat waves (HWN): number of days in a year in which for at least 3 consecutive days the
90t percentile of the maximum temperatures is overcome, based on a mobile window of 31 days in
the reference period 1991-2020;

e Heatwave temperature (HWTXdx) [°C]: maximum value between the averages of the maximum
temperatures of each heatwave event.

Precipitation. Together with temperature, precipitation is a key variable to determine weather and climate
regime, and therefore possible extreme conditions. Nevertheless, sometimes, records of daily mean
precipitation do not allow to find changes in extreme precipitation conditions, which could be due to two
opposite phenomena: heavy precipitation (defined as the maximum annual 5-day consecutive precipitation;
EEA, 2021) or drought (a period of abnormally dry weather, long enough to cause a serious hydrological
imbalance). Especially these latter mentioned extreme conditions are those that generally lead to severe
damages and losses (EEA, 2022). Therefore, the adoption of these indicators is even more necessary in
relation to climate change, since extreme precipitations are expected to increase over Europe up to 5% by
2050, although the annual precipitation is supposed to decrease (Pereira et al., 2021). The precipitation
indicators selected for this study are:

o Daily precipitation [mm]: total daily amount (sum) of hourly precipitation;

e Maximum precipitation [mm]: maximum daily amount of hourly precipitation;

e RXlday [mm]: monthly maximum cumulative precipitation in 1 day;

e RX5day [mm]: monthly maximum cumulative precipitation in 5 consecutive days;

e R95pDAY: monthly number of days with cumulative daily rainfall exceeding the 95" percentile of the
distribution of cumulative rainy days (precipitation 2 1 mm) in the reference period 1991-2020;

e CDD: maximum number of consecutive dry days (precipitation < 1 mm) in a year.

Humidity. Humidity is intrinsically related to temperature and pressure and affects precipitations. In fact,
higher temperatures allow to increase the moisture content in the atmosphere, and therefore the intensity
of precipitations. Specifically, the adopted humidity indicators are:

e Humidex [°C]: mean monthly humidex index;

o Maximum humidity [%]: maximum daily relative humidity;

e Minimum humidity [%]: minimum daily relative humidity;
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o  HuxWF: number of days in a year with mean daily Humidex value equal or higher than 35 °C for
almost 3 consecutive days.

Wind. In addition to temperature and precipitation, winds are identified as key indicators when extreme
weather events are investigated. In fact, extreme wind speeds can cause severe impacts to infrastructures
and activities. Specifically, the study of wind conditions is particularly important in coastal environments, as
wind intensity and direction deeply affect wave regimes, which can have cascading effects on coastal erosion
and flooding (Seneviratne, 2012). In relation to global warming, higher heat content in the atmosphere and
warmer ocean surface allow the formation of highly energetic storms with consequently high wind intensity.
The wind indicators used in this study are:

e Daily average wind velocity [m/s]: mean wind speed at 10 m;

e Daily maximum wind velocity [m/s]: maximum wind speed at 10 m (wind flurry);

e Daily mean wind direction [°]: mean wind direction at 10 m.
Solar radiation. Solar radiation is the driver of the cyclic component of the variations of the terrestrial
atmosphere's thermodynamic state (Battinelli, 1997). Therefore, it has a strong impact on the average
temperature and consequently on the weather/climatic machine. To consider this factor, in this thesis, the
adopted indicator is:

e Solar radiation [W/m?]: daily solar global radiation.

Oceanographic indicators. The selected 12 oceanographic indicators are related to:

Sea-surface indicators. In coastal environments, the change in the sea surface level and in the marine currents

regime, particularly in relation to storm surge events (generated by the drop in atmospheric pressure and
strong winds), can cause disastrous effects on coastal communities, principally along the shoreline. If future
scenarios are considered, higher mean sea levels, consequent to climate change, will modify permanently
the wave height in the surf zones, a condition that will be aggravated in presence of extreme events
(Seneviratne, 2012). In the frame of this thesis the selected sea-surface related indicators are:
e Sea surface height (SSH) [m]: the height of the sea surface above a reference ellipsoid;
e Maximum sea surface height (MSSH) [m]: maximum registered SSH value;
e Eastward seawater velocity (ESV) [m/s]: eastward component of the seawater velocity current,
detailed in earth coordinates relative to North True;
¢ Northward seawater velocity (NSV) [m/s]: northward component of the seawater velocity current,
detailed in earth coordinates relative to North True.
Wave. Wave parameters are generally used in several studies aiming at assessing the damages caused by
extreme hazards in coastal environments (Table 2). Extreme waves can threaten the safety of coastal

inhabitants and those involved in maritime activities (Seneviratne, 2012). In addition, waves are decisive in
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shaping littoral areas, since the energy dissipation of the breaking wave on the coastline can severely

contribute to the erosion process (Seneviratne, 2012). The selected variables related to wave regime are:

Significant wave height (WAH) [m]: average height of the highest one-third of all waves measured;
Maximum significant wave height (MWAH) [m]: maximum registered value of WAH;

Significant wind wave height (WIH) [m]: height of waves that are the direct result of the local wind;
Max significant wind wave height (MWIH) [m]: maximum registered value of WIH;

Sea surface wave mean period (WAP) [s]: time interval between two consecutive wave crests to
reach a fixed point;

Sea surface wind wave mean period (WIP) [s]: time interval between two consecutive wind wave
crests to reach a fixed point;

Wind wave direction from (WID) [degree]: wind wave direction expressed as North (0°) and East
(90°) component in earth coordinates relative to the Magnetic North;

Wave direction from (WAD) [degree]: wave direction expressed as North (0°) and East (90°)

component in earth coordinates relative to the Magnetic North.

Territorial indicators.

The territorial indicators play an important role in the generation of damages caused by extreme weather,

since they can act as pathways or exposure and vulnerability elements, increasing or reducing the risk

according to the circumstances and the hazard type. A variety of territorial indicators are used for evaluating

risks. For example, flooding risk, which is one of the main hazards threatening coastal areas, is assessed

through different indicators: for instance, Ha & Kang (2022) used permeability and river discharge, Collins et

al. (2022) adopted also curvature and elevation, Park & Lee (2020) considered land use and urban area

indicators. In relation to the land use indicator, some scientific studies have demonstrated how the decreased

vegetation cover would increase the flood risk (Apollonio et al., 2016; Bae & Chang, 2019; UNEP, 2022). In

detail, for this study, 18 territorial indicators have been chosen:

River discharge [m3/h]: volumetric flow rate of water that is transported through a given cross-
sectional area;

Soil type [% of municipal area]: in the frame of this thesis only two soil types are retained, that count
as individual indicators: i) CL1 (soils on dune ridges and lagoon islands, formed by sands, from highly
to extremely calcareous); ii) CL2 (soils on reclaimed lagoon areas, artificially drained, formed by
highly to extremely calcareous silts). Specifically, for each municipality, the two soil classes are
expressed in % of covered municipal area;

Permeability [% of municipal area]: identifies the surface capacity to absorb or reject water, such
capacity can be classified in 5 categories: very low (0,036-0,36 mm/h), low (0,36-3,6 mm/h), medium

(3,6-36 mm/h), high (36-360 mm/h), very high (360+ mm/h). In the frame of this thesis, the
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permeability indicator is expressed in terms of % of covered muncipal area with a permeability lower
than 3,6 mm/h;

e Elevation [m]: height value (z-axis) at each cell, extracted from the DEM;

e Slope [°]: represents the steepness of a terrain;

e Curvature [°]: represents the distortion of the slope surface;

e Ruggedness index [m]: expresses the amount of elevation difference between adjacent cells of a
DEM;

e Aspect [°]: is the direction of the maximum slope of a surface; the values of aspect range from 0° to
360°, degrees identified with the North direction;

e Land use [% of municipal area]: % of municipal area covered by 5 land use categories namely natural,
beach, internal water, agricultural and fisheries area, and anthropic classes. Each land use category
counts as an individual indicator;

e Shoreline length [m]: length of the municipal shoreline;

e Coastal dunes [m]: length of the municipal shoreline covered by dunes;

e Subsidence [m]: vertical land movement of the Earth surface.

As it will be described in Chapter 4, this thesis has to be considered as a preliminary step for the evaluation
of the factors which mainly contributed to the damages occurred within the 2009-2019 timeframe in the case
study area. Accordingly, more accurate ML algorithms can be designed starting from the identification of the
most relevant factors. In fact, the presence of negligible variables can decrease the predictive capacity of the

model and, at the same time, anomalies in the dataset can bias the predictions.
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4. Data analysis methodology to evaluate the factors influencing damages
caused by extreme events

The objective of this chapter is to describe the data analysis methodology implemented to find, and analyze,
the factors that mostly contributed to the damage occurrences in the case study area. In order to do so,
traditional statistical methods of exploratory data analysis (EDA) and a classification Random Forest (RF) were
applied both at the regional and municipal scale, for evaluating the presence of local differences. Accordingly,
the following sections report the methodology regarding: the pre-processing of the data, to homogenize in
space and time the input variables (Section 4.1); the methods of descriptive statistics and EDA tools adopted
to identify trends and associations among the variables (Section 4.2); the application of the RF model, which
aimed to select the most important features causing damages (Section 4.3); and the investigation of the

selected features, by exploring their differences in presence and absence of damage (Section 4.4).

4.1. Data pre-processing
Data pre-processing is a phase of the data preparation and follows the data collection (presented in Section
2.3). It is a fundamental aspect of data analysis since the raw dataset is prepared and elaborated in order to
extract the desired information. Precisely, two main concepts of data pre-processing were applied: data
transformation and data cleansing. Data transformation consists in manipulating the dataset through
strategies concerning the homogenization of the data format as well as the creation of new variables (e.g.,
data aggregation, attribute/feature constructions, normalization) (Mushtaq, 2019), instead data cleansing
identifies inaccurate, incomplete or incorrect parts of the data which are then modified, replaced or deleted
(Rahman, 2019). The manipulation of the collected data was particularly necessary to obtain variables with
the same spatial and temporal resolution. Moreover, additional variables were created to gain more
understanding in predicting the damage occurrences.
In the frame of this thesis, the spatial resolution was set at the municipal scale, whereas the temporal
resolution was daily for the period 2009-2019.
The final dataset was in a tabulated format and it comprehended four different classes of indicators (i.e.,
atmospheric, oceanographic, territorial, and damages) requiring a distinct pre-processing which was
performed in both QGIS and Python environments (i.e., pandas library).
Concerning the atmospheric dataset, a portion of it required to be homogenized, as variables had hourly (i.e.,
precipitation, temperature, relative humidity), monthly (e.g., RX-1day, RX-5day) or yearly resolution (e.g.,
heat waves and dry days indexes), for the entire Veneto region, and not just for the coastal municipalities.
To resolve the heterogeneous spatio-temporal resolution, the input variables were converted into averaged
values, however, taking into account also daily maximum and minimum values. On the other hand, in order
to overcome the spatial issue, the tabular dataset was transformed into a vector in the QGIS environment

for framing the dataset by taking into account the administrative boundaries of the Veneto municipalities.
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For the oceanographic variables, each of them was computed by calculating the average daily value for each
of the investigated municipalities.

The main pre-processing methodologies of the territorial data regarded the creation of new variables and
the aggregation of others. Specifically, from the digital elevation model (DEM) layer, through the SaGa-terrain
analysis-Morphometry tool, variables such as slope, plan curvature, aspect, and ruggedness Index (RI) were
generated. For variables consisting of several classes (e.g., soil type, permeability, land use), the area of each
class was summed over the respective municipal boundary.

As described in Section 2.3 the damages data were provided by the DPGR (“Decreto del Presidente della
Giunta di Regione”) documents where six damage categories were reported, namely, hydrological damages,
damages to agriculture and fisheries, damages to beaches, damages to infrastructures and activities,
damages to the tertiary sector, and damages to population. However, since this information was not so
detailed for the analysis carried out in this thesis, a unique damage variable was created called “any damage”
indicator, to which was attributed value 1 if at least one type of damage occurred on a certain day in a
considered municipality, otherwise 0.

After having consulted the national MeteoNetwork and European Storm Weather Database (ESWD) for
validating the DPGR documents, it was noticed that sometimes extreme events were recorded some days
before the damages reported in the regional papers, hence new variables were created. Precisely, from the
dataset, the information of 12 main hazard variables related to 1, 2, and 3 days before the event were
retrieved. These main hazard variables were: solar radiation, wind direction, maximum wind velocity, mean
wind velocity, R1-day, precipitation sum, precipitation max, maximum temperature, sea surface height (SSH),
maximum sea surface height (MSSH), maximum significant wind wave height (MWIH), and maximum
significant wave height (MWAH). Regardless of the fairness of the DPGR documents, these additional
variables could increase the ability to predict damages since in coastal areas floods and damages are the
direct effects of meteorological forcings that produce, for a period of time spanning from hours to days,

anomalous values of metrics such as sea level and waves (Lionello et al., 2012).

In this study, the data cleansing phase was mainly related to the treatment of missing values, which were
replaced with the mean value of the associated variable for the considered timeframe. Extreme values of the
dataset were not deleted, since, in dealing with damages caused by extreme events, these values could be

correct and their elimination could bais the entire analysis.
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4.2. Explorative data analysis of the dataset

In this section, the main techniques of data science, followed for analyzing the dataset, are described. In
particular, after having homogenized in space and time the initial dataset, during the pre-processing phase
(Section 4.1), descriptive statistics and exploratory data analysis (EDA) techniques were applied. EDAis a term
coined by John W. Tukey for describing the act of looking at data to see what it seems to say (Morgenthaler,
2009) through visualization and manipulation of the initial data. In addition, implementing EDA techniques
in ML-driven studies provides multiple information: it helps to understand the fairness of the input data, to
have a better comprehension of the observed results, and to detect anomalies (Hafen & Critchlow, 2013).

In the frame of this thesis, analyses of the dataset were executed both at the regional (Section 4.2.1) and

municipal scale (Section 4.2.2).

4.2.1. Regional-scale analysis
Initially, the historical yearly time series of the extreme weather-related damages, occurred in the Veneto
coastal municipalities in the 2009-2019 timeframe, was analyzed. Since the dataset contained daily data for
each of the investigated municipalities, to perform a regional assessment, the data had to be “normalized”.
Therefore, for each day, it was detected if at least one damage had occurred in one of the 11 municipalities,
if so, the variable “any damage” (see Section 4.1) was modified and attributed with value 1, if not with value
0. Then, through the groupby function of the Python’s pandas library, the number of damages was summed
according to the year.
Separately, the yearly mean of the variables of the initial dataset was calculated. This allowed to perform a
correlation matrix between the yearly mean values of the oceanographic and atmospheric indicators and the
yearly damage occurrence. The correlation matrix, which provides an indication of the association between
the variables (Senthilnathan, 2019), was based on the Pearson’s coefficient (p) which measures, precisely,
the strength of the linear relationship between two variables X and Y.
The formula is:

il — )y —y) _ cov(x,y)
Vil — )22 — 9)? 909y

where cov(x,y) indicates the covariance between the two variables and o the standard deviation.

Py =

For each indicator’s macro-category (see Table 3), the variable having the highest correlation index with the
yearly damage variable was plotted together with this latter one, to visually inspect similar patterns (e.g.,
similar peaks behavior). The same operation was repeated by keeping, from the original dataset, only the
dates reporting the presence of damage, and from that, the yearly mean value of the hazard variables was
calculated.

Finally, the presence of similar seasonal and monthly patterns, between the damages and the hazard

indicators, was assessed by performing the same kind of analysis executed for the years.
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4.2.2. Municipal-scale analysis

To understand if, at the local scale, the values of the hazard indicators and the damages recordings showed
significant differences in respect to those found at the regional scale, a proper investigation was carried out
by confronting the different municipalities. Since the number of dates in which damages occurred was very
small, and it became even smaller if disaggregated for the municipalities, the analysis conducted at the local
scale considered values averaged for the entire 2009-2019 timeframe. In particular, for each municipality,
the mean values of the hazard indicators and the number of damages were examined to detect local
variations. The number of occurred damages was obtained by summing, for each municipality, the variable
“any damage” (see Section 4.1).

In addition, for the variables that resulted highly correlated with the yearly number of damages at the
regional scale (Section 4.2.1), an ANOVA test was performed to evaluate significant statistical differences
among the municipalities, which could have been differently impacted by the same atmospheric and
oceanographic variables.

With a municipal-scale analysis, it was possible to investigate if territorial indicators were correlated with the
damage occurrences; that was visually assessed through a scatterplot in which the number of damages and
the territorial variables, of each municipality, were compared.

A focused analysis was specifically applied for the land use indicator with its relative categories (i.e.,
anthropic, agricultural, natural, internal waters, and beach coverage), whose values were provided on a
triannual base. The aim was to detect if the change of a land-use category, over the years, could have
influenced the damage generation. In fact, some studies demonstrated how land cover affects the
occurrence of damages induced by natural hazards like flooding (Apollonio et al., 2016; Bae & Chang, 2019)
or storms (Frazier et al., 2019); additionally, other studies discovered how land use can play an important
role in the mitigation of extreme events themselves (Findell et al., 2017). To inspect this possible association
(i.e., between the number of damages and land use evolution), for each municipality, the number of damages
was summed on a triannual basis to meet the temporal resolution of the land use category, and finally, the
relations among the variables were visualized through a scatterplot.

If significant differences both related to hazard as well as to territorial indicators, among the municipalities,
were not found, that could support the reliability to execute a single RF for the regional scale, without
performing a specific RF for the 11 municipalities (Section 4.3). Nevertheless, the obtained results must be
carefully read, since the recordings of the damages at the municipal scale could be not so accurate (see

Section 2.3).
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4.3.  Random Forest for feature selection

4.3.1. Introduction to Random Forest

To evaluate the variables that mostly influenced the damage occurrence, a classification random forest (RF)
or random decision forest (RDF) was applied. A RF is a machine learning algorithm used both for regression
and classification devised by Leo Breiman in 2001, which as output provides not only the prediction of an
event but also the related most important features.

It is an ensemble method (multi-classifier) obtained by creating multiple decision trees (the single decision
tree is the single classifier) during the training phase; the final result of a RF is determined by the results of
the individual decision trees.

A decision tree (DT) is a ML algorithm aiming at predicting the values of a variable by giving in input a set of
features; the scheme of a DT is reported in Figure 18.

In a DT there are three main node types:

o Root node. The node at the top of the

Root Node
. X[15] <= 0,528
tree; gini=05
samples = 500
e Internal Nodes (or simply “nodes”). ki B, 0]
Parent Tru‘/ wm
.. Node N
They have arrows pointing to them T R
L. qini = 0.474 qini = 0.406
and arrows pointing away from them. samples = 319 samples = 181
value = [307.817, 193.232] value = (74.683, 189.268]
According to certain rules (e.g. Gini / \
. . . qini =0.358 qini = 0.499 qini = 0.49 gini=0.193
impurity), at the internal nodes, data samples = 126 samples = 193 ampls = samples = 63
value = 149.367, 45.583] | | value = [158.45, 147.649] | | value = (61563, 81.256] | [ Valle=[13.42, 108.012]
are split;
. Child Nodes
e Leaf Nodes (or just “leaves”). They
have arrows pointing to them but not Leaf Nodes
arrows pointing away from them; they Figure 18: Scheme of a Decision Tree

represent the terminal part of the DT.

Root node and internal nodes are associated with the input variables, leaf nodes with the output variables.
To construct a decision tree, the training samples are recursively split, by using the input variables. The
splitting is performed in order to create groups/sets (or sub-populations) that are the most possible
homogeneous internally and the most possible heterogeneous between each other. In other words, the
objective of the tree is to find the values of the variable for which the best split is obtained. To split the
population into heterogeneous groups, different methods can be used; in this study, the Gini impurity was
chosen.

DTs have many pros such as being scale-invariant, robust to irrelevant features, and easily interpretable also
by non-experts. However, they have a big con which is the tendency to overfitting (Jackson, 1988), so they
perform very well for the training set but they are not good at generalizing the results, therefore they have

high variance (terminology specified in Section 1.1).

60



To overcome the overfitting problem, a possible solution is the adoption of a RF algorithm. The combination
of several decision trees is effective when the single classifiers (the DTs) are independent among them; to
obtain independent decision trees two ideas are applied:

e Bootstrapped samples. Each DT is trained with a bootstrapped dataset that has the same size of the
original one (e.i. every sample has the same number of variables of the initial dataset), by randomly
selecting samples from the original dataset. The same sample can be sampled more than one time.

e Random feature subset (or feature sampling). For each DT only a random subset of variables
(features) of the training bootstrapped dataset is selected. To decide which variable, from the
random subset of variables, goes into each node, the algorithm selects the one for which the best
splitting is obtained. There are different strategies aimed to decide the number of features used in
each decision tree; a common choice is the square root of the total number of features.

This entire procedure (the creation of a new bootstrapped dataset and the building of a tree by taking into
account only a subset of variables) must be repeated several times in order to have different independent
trees; the ensemble of them constitutes the RF.

For each new input data each DF is evaluated: the RF’s result is the one occurring more times among the DTs.
In other words, the prediction of the category (class) associated with a certain leaf node, is the mode of all
the categories falling in that leaf considering all the DTs constituting the RF (Hastie, 2009). This procedure,
the bootstrapping of the data, and the aggregation of the results obtained from the individual DTs, is called

bagging (Boostrap AGGregaTING).

RF for feature selection

Determining which predictors should be included in a model is becoming one of the most pivotal questions,
as data are becoming increasingly high-dimensional (Kuhn & Johnson, 2013).

In many empirical analyses, a crucial problem is the presence of a set of variables not significatively
contributing to explaining the analyzed phenomenon; that creates a random noise which prevents
recognizing the main effects and the relevant predictors (Genuer et al., 2010). For the analysis performed in
this thesis, a RF was adopted to evaluate the most important features in determining the damage occurrence
since RF is considered a quite successful method for high-dimensional datasets and/or highly correlated input
features (Chen et al., 2020; Zhou et al., 2022). Features selection with RF is considered an embedded method,
which exploits the positive characteristics of the traditional feature selection methods namely filtering
(methods that evaluate the relevance of the predictors outside of the predictive models, and subsequently
model only the predictors that pass some criterion) and wrapping (in which multiple models are assessed by
using procedures that add and/or remove predictors) methods (Kuhn & Johnson, 2013).

To determine the most important features, for each DT constituting the RF, the algorithm calculates how

much a feature decreases the impurity of the leaf; then, the value of impurity decrease is averaged over all
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the DTs to obtain the importance of that feature in the RF (Dubey, 2018). The more the presence of a feature
reduces the impurity, the more important is the feature in the estimate of the output.

Among other feature selection methodologies, RF was chosen because is less affected by multicollinearity
since, for each DT, a random subset of the initial features is selected (Raj, 2019). Anyways, in dealing with
lots of variables the probability of having correlated variables in the random features subset increases, and
that could partially obscure correlated variables in the outcome of the features’ importance. To avoid the
problem of having correlated features in the dataset, several studies (Strobl et al., 2007; Strobl et al., 2008;
Parr, 2018) suggest using methods based on permutation importance (which exploit the concept of out-of-
bag-samples and out-of-bag-errors) instead of on impurity indexes; however, in the frame of this thesis, the

traditional method (impurity-based feature selection) was applied.

4.3.2. Data preparation and RF set-up

The most important task during a ML project is the correct formulation of the problem to solve. In order to
estimate the importance of the features contributing to the damage occurrence, the question that we
wanted to ask was: “Given these set of features, for day and municipality, which is the probability to have a
damage?”. To have a proper response, the dataset had to be balanced with a similar number of dates in
which damages occurred and in which they did not (or the algorithm itself can take care of the skewness of
the data by applying different weights to each sample). If the dataset is highly imbalanced (e.g., a class of the
response variable is more represented than others) the results could be misleading because the more
represented class would obscure the other response’s variable classes, hindering the predictive ability of the
model to find relations (Javaheri et al., 2013). Since, for this analysis, the problem was present (i.e., higher
number of dates with no damages compared to the number of dates with damages), the dataset obtained
after the pre-processing phase was manipulated again, specifically for the RF application.

Then, as described in Section 1.1, to run any type of supervised ML algorithm, the initial dataset must be split
into three sets, called training set, validation set and testing set. The validation phase, to tune the
hyperparameters, was conducted in the frame of the AdriaClim project by ML experts and was out of the
scope of this analysis.

Therefore, after having randomized the order of the observations in the dataset, the dataset itself was
balanced for having the same number of dates with and without damage, and finally split into training and
test set, having respectively 75% and 25% of the dataset data. Since the splitting of the balanced dataset was
executed through the function train_test_split of the sklearn package (implemented in Python), which every
time splits randomly the train and test dataset, to guarantee the replication of the results, a fixed
‘random_state’ parameter (seed) was chosen.

Once the dataset is balanced and split into train and test sets, the RF can be run.

Initially, for each municipality, a RF was run to detect local differences in the prediction of damage

occurrences. However, fearing the issue related to having an exiguous dataset if divided for the individual
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municipality, which is a typical problem in ML (Zahura et al., 2020), a RF was run also for the whole Veneto
coastal area, by combining all the municipalities' data. This last option permitted to take into account
variables related to territorial characteristics, which were constant for each municipality within the 2009-
2019 timeframe. The RF model was obtained from the RandomForestClassifier function of the
sklearn.ensemble package.

Then, to correctly perform a RF, the hyperparameters have to be set up. As described before, the choice of
the hyperparameters’ values was based on pre-analyses made by ML experts within the AdriaClim project,
by using a validation set.

The hyperparameters modified from default values were: ‘n_estimators’ (representing the number of trees),
‘max_depth’ (representing the maximum depth of the tree), ‘min_samples_split’ (minimum number of
samples required to split an internal node), and ‘class_weight’ (weight associated to the classes of the
response variable; in this case, since the dataset was previously balanced, the same weight was attributed to
the response variable’s classes namely damage occurrence and damage absence). For the RF run on a
municipal scale the following hyperparameters were set: n°estimators = 150, max depth = 5, min samples
split = 2; instead, for the RF run on a regional scale the hyperparameters were: n°estimators = 200, max depth
= 8 and min samples split =2.

Once the random forest is run, the feature selection comes as an inherited result.

Finally, four RFs for the whole region, with different input variables, were compared through the F1 score

(see next Section 4.3.3) and the best one was kept for the next analyses.

4.3.3. Evaluation of the Random Forest performance

To assess the performance of the model, therefore to summarize how a ML method (e.g., RF) performs on
the testing data, a confusion matrix is calculated, and from the confusion matrix different metrics can be
extracted. The advantage of the metrics over the confusion matrix is that each metric provides a scalar value
for each configuration of parameters, hence allowing to determine if a configuration is better than another.
For this reason, it is of paramount importance that the chosen metric represents the result that the user
would like to obtain.

A confusion matrix is a square matrix where the dimension depends on the number of variables that the
algorithm has to predict. The correct predictions are contained in the cells of the matrix diagonal whereas
the not correct predictions are found in the cells not belonging to the matrix diagonal. The results of the
confusion matrix for binary classification fall into four categories: true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). If the model aims to classify the presence or the absence of a certain
event, for example, the presence or absence of damages, and the positive case is related to the presence of
the damages, TP are the n° of damages that the model correctly predicts to happen, FP are the n° of damages
that the model incorrectly predicts to happen, TN are the n° of no damages that the model correctly predicts

not to happen and FN are the n° of no damages that the model incorrectly predicts not to happen.
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From the confusion matrix several important metrics can be calculated (Kanstrén, 2020):
e Sensitivity or Recall = TP/(TP + FN). It expresses the ratio between the TP and the total actual positive
cases;
e Specificity = TN/(TN + FP). It expresses the ratio between the TN and the total actual negative cases;
e Accuracy = (TN +TP)/(TN + TP + FP + FN). It expresses the ratio between the correct predictions and
the total amount of predictions;
e Precision = TP/(TP + FP). It expresses the ratio between the TP and the total predicted positive cases;
e F1score=2/(1/Recall + 1/Precision).
All these metrics return a value between 0 (highly erroneous prediction) and 1 (perfect prediction). In this
study, F1 score was selected to test the predictive ability of the RF, since it is considered the most
comprehensive metric (Frasca, 2018).
The confusion matrix and the relative metrics were computed by importing sklearn.metrics package in Python

environment.

4.4.  Analysis of main indicators influencing damage occurrence

4.4.1. Regional-scale analysis

ML algorithms are powerful tools to investigate complex data but should not be considered a substitute for
good research design and scientific reasoning (Jones & Linder, 2015). They are perceived as “black boxes”,
which can provide excellent predictions but whose outcomes should be accurately examined. Therefore, to
understand if the results obtained from the RF feature selection were meaningful, and consequently, to
provide a physical interpretation in the light of the observations, the indicators associated with high feature
importance values in damage prediction were evaluated with traditional statistics and visual tools.

For this final analysis, all the records of the original dataset were kept. The initial objective was related not
only to validating the RF’s results but also to evaluating the differences in the variables’ value during normal
and extreme weather conditions, since the RF told just the relative importance of a variable but not how it
changed (e.g., increase or decrease) during the tested events.

For this aim, for each selected variable, two probability density functions, for the two different situations
(i.e., damage and not damage), were compared. The probability density function (PDF) is a non-negative
function of a continuous random variable, that, when integrated across an interval, it gives the probability
that the random variable takes a value that lies in that interval (Ibe, 2014). For the analysis conducted in this
research, the PDF was automatically derived and visualized through the kernel density estimation (KDE) of
the seaborn library in Python. The comparison of the two curves allowed to detect if there were differences
in the two distributions (one related to the variable's values in damage presence and the other in damage
absence), the associated variability and if, on average, the value of the variables increased or decreased

during events with damage. If no differences were observed, probably that variable was not so important in
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predicting damages and so not strongly associated with them. However, it must be remembered that the
most important features, selected for predicting damages, were obtained by training the RF with a small
fraction of the original number of observations, to overcome the problem of the unbalanced dataset (Section
4.3.2). Therefore, the random training samples could have been not representative of the entire statistical
population, biasing the RF’s predictions and consequently the retrieved selected features.

Since the ordinary KDE is good to describe the mode of a probability distribution but not very precise in
modeling the distribution tails (Matsueda & Nakazawa, 2015), contemporary to the PDF, the 1-D distribution
of the data, through a rug plot, was visualized. This simple graph is very powerful since it easily allowed to
spot if, when there were damages, the variables’ values were higher or lower than a certain threshold and if,
by overpassing that threshold, no damage events were still present or not. In fact, if by exceeding a certain
threshold only damages were observed, it could be said that the variable, directly or indirectly, was strongly
associated with the damage occurrence. Nowadays, the identification of operational thresholds, defined as
“levels of weather conditions at which a facility or piece of infrastructure experiences disruption, damage, or
other impacts” (Asariotis et al., 2020), is fundamental to design suitable mitigation strategies against weather
or climatic hazards (UNCTAD, 2017), and to operationalize early-warning systems (Papagiannaki et al., 2022;

Young et al., 2021).

Then, to assess if the values of the most important variables, for predicting damages, changed over time, a
specific investigation was done by executing the previous analysis on a yearly scale. In particular, since
extreme weather events remarkedly increased in the last ten years, both in frequency as well as in intensity,
globally and specifically in Italy (Osservatorio Nazionale clima e citta, 2021), the analysis wanted to evaluate

if the phenomenon was noticeable also in the case study area for the period 2009-2019.

Finally, it was explored how, over the seasons, the distribution of the main hazard variables changed during
damage events. Since most of the atmospheric and oceanographic variables were seasonally driven, the
difference in their respective values, during damage and no damage events, could give insights into the
possible role played by the variable in determining the damage in a certain season, and how that role could

mutate by changing season.

4.4.2. Municipal-scale analysis

The atmospheric and oceanographic variables which resulted to change significantly during damage events
at the regional scale (Section 4.4.1) were investigated at the local scale.

The aim was to understand if the distinct municipalities, during damage events, were affected differently by
the same hazard indicators and if, during these events, the variables showed the same municipal pattern

present in no damage conditions.
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Initially, for the 11 municipalities, the mean value of the selected variables, during damage and no damage
events, was computed and confronted. Then, in parallel with the analyses conducted at the regional scale,
the investigation was performed also on a seasonal basis to evaluate the seasonal differences on a local scale.
To conclude, it must be remembered that the analysis of the damages conducted at the local scale could be
biased by the presence of an insufficient number of data, as the damages recorded in each municipality were
very few. Therefore, the results could be not indicative of municipal differences, and more detailed

examinations should be made.
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5. RESULTS: Data analysis of the indicators influencing damage occurrences
in the coastal area of Veneto region, Italy

In this section, the main findings of the data analysis process, applied for determining the most important
variables related to extreme weather-driven damages, are reported. After a brief description of the outcomes
related to the raw dataset pre-processing (Section 5.1), the principal results derived from the pre-survey of
the indicators through EDA (Section 5.2), the classification RF for feature selection (Section 5.3), and the final
analysis which combines the previous two techniques (Section 5.4) are discussed both at the regional and

municipal scale.

5.1. Data pre-processing

Following the pre-processing methodology reported in Section 4.1, the final homogenized dataset consisted
of 44187 observations (samples) and 92 input variables (features). The observations were recorded for each
of the 11 investigated Veneto coastal municipalities, for each day of the 2009-2019 timeframe.

The 92 variables comprised all the indicators described in Chapter 3, which were subdivided into 21
atmospheric variables, 12 oceanographic variables, 18 territorial variables, 1 damage variable, and 362
additional variables reporting, for a specific daily observation, the values of the most important
oceanographic and atmospheric indicators registered 1, 2 and 3 days before the observation itself, as
discussed in Section 4.1. Finally, four other variables accounted for the municipality index, the date, the
season, and the month of the observation. The name of the 11 municipalities and the related identification
index, adopted in the frame of this thesis, is clarified in Table 4, whereas the months associated with the

season identification index in Table 5.

Table 4: Municipality name and relative identification index Table 5: Months and relative season index
|

San Michele al Tagliamento 0 January/February/March Season 1 (Winter)
Caorle 1 April/May/June Season 2 (Spring)
Eraclea 2 July/August/September Season 3 (Summer)
Jesolo 3 October/November/December = Season 4 (Autumn)
Cavallino-Treporti 4
Venezia 5
Chioggia 6
Rosolina 7
Porto Viro 8
Porto Tolle 9
Ariano nel Polesine 10

The dataset presented 34437 missing values, which were replaced with the average value of the associated

variable by considering the entire timeframe.

12 The list of the atmospheric, oceanographic and territorial variables is reported in Chapter 3. The information related
to the damage indicator and to the variables recorded in the days preceding the observations is in Section 4.1.
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5.2.

5.2.1. Regional-scale analysis

Annual analysis

The information related to the days which
registered the occurrence of at least one damage
in the Veneto coastal municipalities, within the
2009-2019 timeframe, is summarized in Figure
19. Specifically, among the 4015 days of the
dataset, only 95 of them saw the manifestation
of at least one damage.

2010 recorded the highest number of damages
(20); in fact, in that year the Veneto region was
series of extreme

severely hitten by a

meteorological events, among which the
dreadful flooding episode occurring between the
31t of October and 2" of November, known as

“Alluvione dei Santi” (Regione del Veneto, 2011).

N. of damages

Explorative data analysis of the dataset

200 20

18
175

15

=
=

~
n

o
=

25

0o

T T T T T T
2014 2015 016 2017 018 2019

Year

2009

2010 2011 2012 013

Figure 19: Yearly distribution of the occurred damages in the
coastal area of Veneto region within the 2009-2019 timeframe

2016 was in the second position for the number of damage occurrences (18), followed by 2014 (15) while

2011, 2017, and 2019 accounted for the smallest number (3).

To gain more understanding of possible relations existing between the damage occurrences and the

atmospheric and oceanographic indicators, a correlation matrix (reported in ANNEX Ill) was calculated by

confronting the mean yearly values of the hazard indicators with the number of yearly damages (procedure

reported in Section 4.2.1). For each macro-category of the hazard indicators defined in Table 3, the variables

mostly correlated with the yearly damage occurrences are reported in Table 6.

Table 6: Variables highly correlated with the number of yearly damages within the 2009-2019 timeframe

Indicator macro-category

Variable having the highest absolute

Correlation index value

value of correlation with the yearly

damages variable

Temperature Maximum temperature -0.62

Precipitation Daily precipitation 0.676
Humidity Minimum humidity 0.579
Wind Maximum velocity 0.48

Solar radiation Solar radiation -0.701
Sea surface MSSH (maximum sea surface height) 0.449
Wave regime WAP (sea surface wave mean period) 0.609

To visually inspect the correlation between the mean yearly values of the described variables and the yearly

damages, the annual trends are reported in Figure 20. For most of the cases, the positive and negative peaks
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of the damages and the ones of the examined variables showed a significant similar or opposite pattern,

except for 2018 and 2019. That could signify a scarce association between the variables and the damages in

the last two years of the dataset. Anyways, the yearly association between the selected variables and the

damage occurrences is quite undeniable, meaning that the annual fluctuation of the hazard variables could

play a role in creating the conditions for damage manifestation.

-17.50 a) —e— Temperature_Max [ 200
-#- Damages
-17.75 b4 s
Iy
'| 1
U 1800 [
g, » [t Fis.0
i i
b B oA b
2 1825 /o [ =
b [ 125
< ’.F" Y i i 0
2 -1850 \ i \ 2
[l L}
b \ 0o E
2 a
E -18.75 4
@ i F75
) \
-19.00 \
1
4 |50
-19.25 Yo
. & e
|25
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year
325 b) b —e— Precipitation [ 20
- \
= Damages
200 7.5
E 15.0
E s —_
5 =
= Fiz25 5
& 250 H
& E‘
00
g 225 ©
[=]
=
o 75
o 200
Fso
175
|25
y v y v T T y y v v v
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2018
Year
&0 " h
C) —e— Humidity_Min [ 200
-#- Damages
59 N
\ 175
\
58 \
\
—_ | F1s.0
® —
2 57 { \ P
£ / ! =
5 ! F1zs "
]
2%/ g
5 ; g
2 ¢ F10.0 %
55
=1 [=]
T
5 k75
53 F5.0
e
Sa
.
52 las
y v v y y v v T T y y
009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year
d) b —&— Splar_Radiation 0.0
1
4000 i -4 Damages
I
‘\‘ turs
3950 1
E‘ [}
£ '|. F1s.0
3300 -
B : =
< \ b1zs's
o 3850 v
el f=2)
g ! g
® 1 F10.0 %
o 3800
- ' a
i |
& w50 \ [7s
i
|
3700 | rse
' g
H & Te
3650 T T T T T T T T T T T ras
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Year

69

009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

Figure 20: Yearly trend of damage occurrences
confronted with the yearly trend of: a) maximum
temperature; b) daily precipitation; c) minimum
humidity; d) solar radiation; e) maximum wind
velocity; f) MSSH; g) WAP
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The same type of analysis was performed by keeping only the dates in which damages occurred, and from
that, the yearly mean of the hazard variables was calculated. However, in this case, the same graphs plotted
in Figure 20 did not show any kind of similar pattern between the peaks of the variables and those of the
number of yearly damages. The controversial result could be explained by the fact that there could have been
a delay in the damage reporting (i.e., the damage was not recorded on the same date of its happening) or
simply, the values of the hazard variable during days in which damage happened were not yearly correlated
with the number of damage occurrences.

By analyzing the entire correlation matrix interesting findings were discovered. Neglecting the expected
correlation between the same type of indicator class (i.e., oceanographical and atmospheric) such as, for
instance, the high correlation between temperature and humidity, humidity and precipitation, considerable
correlation values were found between other types of variables. For example, mean (SSH) and sea surface
height (MSSH) were highly related to the indicators of precipitation (0.591 - 0.8), humidity (0.84 - 0.93), and
solar radiation ((- 0.715) - (-0.743)), in turn, these latter variables were highly correlated with wind wave
characteristics, especially with the mean wave period (WAP), e.g. WAP and precipitation indicators registered
a correlation of 0.74 - 0.92. These values revealed how atmospheric and oceanographic variables strongly
interacted with each other. Therefore, also in the context of damages caused by extreme weather events in
coastal areas, it must be remembered that often it is the combination of different variables which allows

explaining a certain occurrence rather than a variable alone (Wazneh et al., 2020).

A secondary correlation analysis was then executed to test the information of the main oceanographic and
atmospheric variables recorded 1, 2, and 3 days before the observation’s date (described in Section 4.1). On
average, the variables registered 2 days before the event’s date were the ones having the highest correlation

with the damages. This information was used for running the RF (Section 5.3).

Seasonal and monthly analysis

The same damages analysis executed for detecting the yearly trend was proposed for seasons (Figure 21)
and months (Figure 22). It emerged how the spring and the summer seasons had the highest number of
damages, reaching their peaks respectively in the months of June and September. These seasons showed
also the highest values of minimum, mean and maximum temperature (respectively 17.58 °C, 22.71 °C, and
28.10 °C), solar radiation (5589 W/m?), and extreme precipitation (maximum precipitation: 1.34 mm; RX-
1day: 29.52 mm); oppositely, in these seasons, the lowest values of minimum humidity and of those

associated to the main oceanographic variables (e.g., SSH, MSSH, WAH, WID, WIP) were reached.
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While some of the hazard variables (e.g., temperature, precipitation) had mean seasonal values that
exhibited a similar pattern to that of the seasonal damages, for the monthly analysis just the precipitation
indicator presented these characteristics. The main interesting observations between the seasonal and
monthly damage trends with the hazard indicators are reported in ANNEX IV.

Nevertheless, an in-depth analysis based on the seasons and months of every individual year of the 2009-
2019 timeframe, regarding both the damage occurrences (distribution reported in ANNEX V) and the hazard
indicators, has brought no evidence of a clear seasonal/monthly trend (i.e., the mean values of the variables
had not a recognizable seasonal/monthly pattern in the different years). Therefore, the role played by the

seasons and months in the damage occurrences is difficult to assess.

5.2.2. Municipal-scale analysis

For every investigated municipality Figure 23 shows 69

-
[=]

the sum of days in the 2009-2019 timeframe that

=]
[=]

presented at least one damage. It can be seen how,
a9

(%3]
(=]

except for municipality 5 (Venice), the number of

35 35

damages decreases by going from north to south, 3

w
o

28

N. of damages
&

shifting from 55 to 28. That could be due to a variety
of reasons related to different hazards intensity and

frequency among the municipalities, different 10

territorial features as well as a diverse municipal area, 0 —n B
4 5 6 7 8 9 10
Municipality

or different local characteristics of the assets’
exposure and vulnerability (this latter information Figure 23: Damages occurred in the 11 investigated
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was not available in an exhaustive way for the
analysis conducted in the frame of this thesis).
Concerning the averaged values of the hazard indicators for the 2009-2019 timeframe, computed for each

municipality, it was found that the atmospheric indicators related to solar radiation, temperature, and
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humidity were quite similar. In particular, solar radiation had values around 3613-4025 W/m?, maximum
temperature around 18.4-19.1 °C, mean temperature around 13.3-14.5 °C, and maximum humidity of 95.3-
98.3% RH. The only slight difference concerned municipality 5 where the minimum temperature (8.1 °C) and
the minimum humidity (53.2% RH) showed the lowest values compared with the other municipalities, whose
values were instead quite homogeneous.

CCD (cumulative dry days) and HuxWF (number of days in a year with Humidex value higher than 35 °C for
three consecutive days) variables displayed a similar pattern, with municipalities 4 and 5 having the highest
values, followed by the southern municipalities and then by the northern ones. In detail, CDD reached a value
of 43 days for municipalities 4 and 5, around 19-24 days for municipalities 6-10, and 11-26 days for
municipalities 0-3; while HuxWF counted 12 and 15 days for municipality 4 and 5, 10 days for municipalities
6-10 and about 5-9 days for municipalities 0-3. All this means that the central municipalities suffered more
heatwave and droughty conditions, whereas the northern ones were less affected.

All the precipitation indexes evidenced decreased values going from north to south, for example, the average
daily precipitation passed from the 2.99 mm of municipality O (San Michele al Tagliamento) to the 1.91 mm
of municipality 10 (Ariano nel Polesine); the northern municipalities resulted wetter because they were
influenced by the Pre-alpine barriers (Barbi et al., 2012).

Regarding the wind velocity, both the mean and the maximum velocity values manifested the same trend
over the municipalities, with municipalities 7 and 8 having the highest wind values (mean wind velocity
respectively of 2.87 and 2.39 m/s and maximum wind velocity of 5.34 and 4.65 m/s). These data could be
related to the different shoreline orientation of the municipalities 7 and 8, which could influence the wind
intensity.

Most of the oceanographic variables, both related to the sea surface height as well as to the wave regime,
exhibited a clear pattern by going from north to south of the investigated area, in fact, except for WAD (wave
direction), eastward (ESV) and northward seawater velocity (NSV), all the other indicators increased in their
values. Specifically, SSH went from -0.39 to -0.35 m, MSSH from -0.30 to -0.28 m, MWAH (maximum
significant wave height) from 0.49 to 0.81 m, MWIH (maximum significant wind wave height) from 0.35 to
0.49 m, WIH from 0.13 to 0.20 m, WID (wind wave direction) from 136 to 154 degrees, WAP (wave period)
from 3.01 to 3.56 s and WIP (wind wave period) from 1.35 to 1.70 s. Conversely, WAD decreased from
municipality O to municipality 8 (respective values of 138 and 94 degrees, shifting towards a more northern
direction of the wave regime) to increase again for municipalities 9 and 10. An atypical behaviour was
manifested by the variables related to the velocity of ocean currents (ESV and NSV), which had a quite
heterogeneous pattern among the municipalities. ESV reached the maximum values for municipality 6 (0.051
m/s) followed by municipality 7 (0.034 m/s) and 8 (0.034 m/s), NSV reached the maximum positive value (e.i.
a northward direction of the sea current) for municipality 6 (0.034 m/s) and the highest negative value (e.i.

a southward direction of the current) for municipality 10 (-0.07 m/s).
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If the average trend of the analyzed variables is compared with the ones of the damages (Figure 23), visually,

it seems that only precipitation indexes and those related to oceanographic variables could have had an

association with the damages at the municipal scale, since the gradual increase or decrease.

The variables which resulted to be higher correlated with the damages at the regional scale were investigated

for each individual municipality (Figure 24), to detect differences or similarities among the municipalities

themselves.
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Unfortunately, to investigate if the variables among the 11 municipalities were statistically different, the
ANOVA test could not be performed since most of the variables did not respect the ANOVA assumptions,
which are the normal distribution of the residual errors and the homoscedasticity requirement. The test was
applied only to mean and maximum sea surface height (SSH and MSSH) that respected the assumptions, but
the p-value was always lower than 0.01 so the variables for the different groups (municipalities) were
statistically different. Even though from the boxplots (Figure 24) MSSH seemed quite similar among the
municipalities, the information from the ANOVA test allows to carefully interpret the results and not make
hasty conclusions. So in the end, the hazard variables among the municipalities could be statistically different

and could have differently affected the damage occurrences in presence of extreme weather events.

Concerning the territorial indicators, the municipalities showed significant divergences, although the
retrieved data were mean values, calculated over the entire municipal area, which as a matter of fact could
have had heterogeneities inside its territories.

The municipalities’ area had a value spanning from about 45 km? (municipality 4; Cavallino Treporti) to 416
km? (municipality 5; Venice).

The percentage of the municipal area with a permeability lower than 3.6 mm/h was highest in the
municipalities 0, 1, 2, 5, 8, 9 with a value around 0.81%, lower for the others, and null for municipality 4,
meaning that the soil in this latter municipality was pretty permeable.

The percentage of the municipal area with a soil type falling in the CL1 class (calcareous soil) reached the
highest value for municipality 4 (0.64%) followed by municipality 11 (Ariano nel Polesine) (0.41%); the others
had a value lower than 0.4%. In relation to the soil type belonging to the CL2 class (calcareous silty soil),
municipalities 1, 2, and 9 registered the highest values (respectively 0.66%, 0.67%, and 0.56%) whereas it
was practically absent for municipalities 4 and 5.

The percentage of the subsiding area with a subsidence rate higher than 2 mm/y was the lowest for
municipality 5 (19.3%) and the highest for municipality 4 (91.9%).

Elevation had heterogenous values over the municipalities with the maximum positive value for municipality
1 (Caorle) (1.75 m) and the maximum negative value for the southern municipalities (the minimum elevation
was recorded in municipality 9 with -1.19 m); these latter municipalities are part of the Po River Delta, which
is located below the mean sea level.

Slope and Rl index seemed to increase by going from north to south of the study area with values respectively
of 0.31° and 0.04 m for municipality 1 whereas of 0.66° and 0.09 m for municipality 10.

The aspect indicator decreased by moving southward (from 187° of municipality 0 to 168° of municipality
10), outlining the tendency of the slope to be exposed towards a more eastern direction.

The length of the shoreline and the coastal dunes coverage had a similar pattern over the municipalities, with
the highest values for municipality 9 (respectively 40 km and 23 km), followed by municipality 5 and 1; the

lowest values were reached by municipality 10 and 2.
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In relation to the percentage of land use categories: the central municipalities had the highest values of
anthropic coverage (26-19%), a pattern that was reversed for agricultural coverage (i.e., lower values for the
central municipalities; 32-16%), municipality 7 had the highest % of natural cover (44%), municipality 4 the

highest % of beach coverage (2%), and finally, municipality 5 and 6 had the highest % of internal water (51
and 41%).

A scatterplot between the damages that occurred in the 11 municipalities and the territorial indicators
(Figure 25) did not reveal the existence of recognizable correlations. The only exceptions that seemed to be
positively associated with the number of damages were the elevation and the anthropic land-use coverage
indicator, this latter correlation is quite reasonable since more assets could be negatively impacted by
extreme weather events. However, we must keep in mind that several factors can play a role simultaneously,

and correlation does not mean causation.
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Figure 25: Scatterplot between the number of damages occured in the
municipalities within the 2009-2019 timeframe and the relative territorial
indicators

It must be highlighted how the relations between the territorial indicators and the number of occurred
damages could be more informative if specific damage categories would have been considered (information
not available for this thesis). For example, in the case of flooding, generally, the higher the elevation is, the
lowest the number of damages is, oppositely to the slope index since, with a higher slope, the more rapid
the water flow is, which consequently has higher energy (Collins et al., 2022; Ha & Kang, 2022).

Finally, given the availability of land use indicators on a triannual basis for the studied timeframe, it was
explored if the change of the land-use coverage over the years, for the different municipalities, somehow,
could have influenced the damage occurrences; the findings are reported in Figure 26. What can be deduced

is that — except for some cases — the number of damages changed even though the land use categories for

the 11 municipalities remained quite constant for the period 2009-2019.

Figure 26: Damage occurrences and evolution of land use categories over the years
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5.3. Random Forest for feature selection

5.3.1. Balanced dataset and tests of different input combinations

Balanced dataset

As specified in Section 4.3.2, the composition of the dataset is a key factor for the outcome of the analysis.
The initial dataset, obtained after the pre-processing phase (Section 5.1) consisted of 44187 observations, of
which only 510 (1,2 %) recorded the presence of damage, whereas 43677 (98,8 %) did not detect any damage;
in other words, the dataset was highly imbalanced (Figure 27a).

In order to attribute the same importance to damage and no damage data, the dataset was manipulated to

have the same number of damages (510) and non-damages (510) recordings (Figure 27b).

Damage
12%
No damage 50.0% 50.0% Damage
98.8%
Figure 27a: Percentage of damage recordings Figure 27b: Percentage of damage recordings after
before balancing the dataset having balanced the dataset

Then, the balanced dataset, consisting of 1020 observations was split into training (75% of the observations)
and test (25% of the observations) sets. The validation of the trained models was performed in the framework
of the AdriaClim project and was beyond the scope of the thesis, hence in the following only the train and
test datasets will be discussed. So, the final training set had 765 observations (with 384 recordings of no
damages and 381 recordings of damages) while the test set had 255 observations (with respectively 126 no

damages and 129 damages recordings).

Testing different combinations of input variables

Initially, an individual RF was run for each one of the municipalities, with 36 input features. The considered
features were: the atmospheric (21) and oceanographic (12) variables registered in the date of the
observation, two categorical features related to the season and the month of the observation, and the river
discharge. The other territorial indicators were dismissed because they would have been meaningless for the
RF since at the municipal scale they were constant for the entire analyzed timeframe. The results showed
that, generally, the SSH and MSSH (mean and maximum sea surface height), as well as RX-1day and RX-5day
(extreme precipitation indicators), were the most important features for all the municipalities, having a

relative importance of 8-10%; however, some differences were observed. On average, extreme precipitation
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variables resulted in the first positions for the northern municipalities whereas SSH and MSSH were always
the first features for the southern municipalities. Municipality 1 (Caorle) had river discharge among the most
important features; municipalities 3 (Jesolo) and 6 (Chioggia) had indicators of wind and daily precipitation
among the first positions. The information of seasons and months had always relative importance lower than
1.5%.

|II

Nevertheless, every time that the “municipal” RFs were run, the results and the order of the most important
features changed a lot as well as the F1 score of each independent RF, which spanned between 0.73 to 0.99.
These highly variable results were probably related to the scarce number of observations (samples) with
which the “municipal” RFs were trained. If more observations, for each municipality, would have been
available, running individual RFs could really give an understanding of how hazard indicators contribute to
local damage occurrence since some of the variables presented heterogeneous values at the municipal level
(Section 5.2.2).

Hence, due to these not reliable outcomes, it was decided to run a “regional RF”, comprising all the
observations of the balanced dataset, by testing different input variables’ combinations.

In total, four initial RFs were tested, the first one had 54 input variables (21 atmospheric, 12 oceanographic,
18 territorial, and 3 other variables regarding season, month, and municipality); the second combination was
equal to the first except that the territorial variables were not considered; the third combination was equal
to the first with the addition of 9 variables related to atmospheric and oceanographic indicators (i.e., RX1-
day, precipitation maximum, maximum temperature, wind direction, maximum wind speed, solar radiation,
MW!IH, MSSH, and SSH) registered 2 days before the observation and, finally, the last fourth combination
was equal to the third with the exclusion of territorial indicators.

Evaluated on the test dataset, the first combination obtained a F1 score of 0.93, the second of 0.94, the third
of 0.94, and finally the fourth of 0.95.

From the outcomes it seems that the presence of territorial indicators (first and third option) reduced the RF
performance, in fact, they resulted always in the last positions of the features’ relative importance, so their
presence created just noise in the RF, decreasing the performance. However, among the territorial indicators,
elevation and slope had the highest relative importance; the municipality feature was always at the end of
the features ranking as well as indexes of TX90p, maximum humidity, CDD, and other wave indicators; the
month feature was always more important than the season.

In general, in all the performed RFs, SSH and MSSH had the highest importance (usually higher than 8%),
followed by parameters related to precipitation, than temperature; other oceanographical features emerging
among the first 15 were MWAH and WAH (maximum and mean significant wave height). Since the fourth
combination got the best F1 score, it was considered as the final result on which further analyses were based

(Section 5.4). In the next section, in-depth observations related to this final result are discussed.
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5.3.2. Validation of the Random Forest and feature selection

As previously mentioned, the fourth combination of variables 20
confusion matrx

implemented in the RF gained the best performance according to -

the F1 score metric with a respective value of 0.95, a recall of 0.99

and a precision of 0.91 (definitions provided in Section 4.3.3). The -
!

confusion matrix (Figure 28) showed how the model correctly = -
predicted the damages’ presence or absence 95% of the time, by .

40

correctly evaluating 123 damage occurrences (TP) and 119 no

damage occurrences (TN). By looking at the mistaken predictions,

it appears that the model had the tendency to overestimate the Predicted labal

number of occurred damages (12 FP), while just one time it failed Figure 28: RF confusion matrix (0 =

damage absence; 1= damage

in not predicting correctly the presence of damage (1 FN). presence)

A possible cause of the tendency to overestimate the damage

presence could be due to the fact that, since the RF was trained mainly with hazard data and not with data
of exposure and vulnerability (which are very important when damages are assessed), the damage
information could have been interpreted, by the RF, more as the presence or absence of an extreme event
(in fact the recorded damages were generally caused by very extreme events). So, it could have happened
that in some dates the hazard characteristics were those of an extreme event that however did not cause

damage.

Figure 29 displays the relative importance of the input features of the RF, while Table 7 reports only the ones
having relative importance higher than 2% (18 features) hereafter called “selected features”. What is evident
is the role of SSH and MSSH (mean and maximum significant sea surface height) in determining the damage
prediction as they had an importance that was double if confronted with that of the features coming next.
SSH and MSSH were followed by precipitation indicators, as resulted also by running the “municipal” RFs.
Then, other important features were related to temperature and WAH/MWAH (mean and maximum
significant wave height). Except for the features in the first positions, it was difficult to assess the role of the
others since they had similar low importance. To this concern, two additional RFs were run to evaluate
possible increments of the F1 score, by reducing the number of input variables. For the first tentative only
the selected features were kept, for the second one the last 10 features were eliminated, but in both the
cases the F1 score decreased. That means how all these features could play a role in determining the damage
prediction, so also the detection of irrelevant features is not straightforward. It must be remembered that
the results could be biased by the presence of correlated features, but a further investigation was out of the

scope of this analysis.
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Feature Importances
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TEmperature_Mean
MWAH SSH 0.089
RX-lday 2 day before
Erperature_Min MSSH 0.080
manth "
WAH Humidex 0.044
Emperature_Max_2_day_before Maximum precipitation 0.043
M55H 2 day before
TEemperature_Max H F :
. Daily precipitation 0.039
Direction_Mean RX-5day 0.038
“elocity _Mean
Solar_Radiation_Sum R)(_]_day 0.035
Humidity_Min
wip HWTXdx 0.035
Elér_Raﬂlall0n_§u|‘ﬁ_2_day’_hel‘0ﬂe'
MWIH SSH of 2 days before 0.035
WP
Velocity_Max Mean temperature 0.029
WD
WiD MWAH 0.028
sEason
Direction_Mean_2_day_before RX-1day of 2 days before 0.028
ESV
Wi Minimum temperature 0.027
MINIH_2 day befare
1 Month 0.027
NSV
oo WAH 0.023
Velocity Max 2_day_before Temperature of 2 days before 0.022
Humidity_Max
TRR MSSH of 2 day before 0.021
Preci pll‘i‘[l&ﬂ_MEh_?_day_DETﬂ e
T30p Maximum temperature 0.020
rmunicipality
0.00 00z 004 006 008

Relative Importance

Figure 29: Relative importance of the input features form the RF
feature selection

To summarize, the RF correctly classified the majority of the events. The feature selection associated with
the RF presented more dubious outcomes, which were probably related to the elevated correlation between
the variables. Anyhow, some variables, every time, resulted to have the highest relative importance,

specifically SSH, MSSH, and precipitation indicators.
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5.4.

5.4.1.

Analysis of the most influential variables associated with the damage

Ooccurrence

Regional-scale analysis
In this section, the behavior of the RF’s selected variables (Table 7) is analyzed and the distribution curves of

the indicators on two datasets, i.e. the set comprising the observations associated with no damages and the

set comprising the observations associated with damages are compared. The most interesting comparisons

are graphically reported in Figure 30.
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Figure 30: Probability density distribution, for observations with and without damages, of: a) SSH; b) MSSH; c) SSH of 2days before;
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The variables mean (SSH) and maximum sea surface height (MSSH) showed similar distributions for the two
datasets (presence and absence of damage), but the distribution of the dataset associated to damage events
presented a clear shift towards higher values (respectively Figure 30a and Figure 30b). This behavior is
reasonable since during extreme weather events the meteorological conditions, especially related to the
atmospheric circulations (Bergant et al.,, 2005), trigger the formation of storm surges, defined as “an
abnormal rise of water generated by a storm, over and above the predicted astronomical tides” (NOAA,
2022b). This shift in the sea surface’s values (although smaller) between the two datasets, was observed also
comparing the distribution of the two indicators recorded 2 days before the event (Figure 30c for SSH and
Figure 30d for MSSH); information like this could be useful for activating early warning systems and preparing
possible action plans.

The difference in the mean value of MSSH, during damage and no damage events, was about 0.2 m (-0.295
m during no damage events and -0.09 m in damage presence), whereas it was observed that damages
occurred only when MSSH exceeded -0.48 m, and how values higher than 0.51 m were associated only with
the presence of damage. A similar difference of 0.2 m between the mean values of the two datasets was
recorded also for SSH (values of -0.38 m without damages and -0.23 m with damages) but in this case, if a
lower threshold below which no damage occurred (-0.59 m) was detectable, the presence of a higher
threshold above which only damages occurred was not present.

For the values of 2 days before the observation, both for MSSH and SSH, the difference in the mean values
between damage and no damage events was about 0.1-0.15 m (MSSH recorded a mean value of -0.29 m
during no damage and -0.20 m during damage whereas, for SSH, values were respectively of -0.38 m and -
0.29 m).

The probability distributions of MWAH (maximum significant wave height) and WAH (significant wave height)

presented two right-skewed curves for the two datasets, with the one related to damages having a higher
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variability (respectively Figure 30e and Figure 30g). The median values of the two distributions differed of
more than 0.3 m for MWAH (respectively 0.43 m in damage absence and 0.77 m damage presence) and about
0.2 m for WAH (respectively 0.25 m in damage absence and 0.46 m in damage presence). As for the MSSH,
the MWAH indicator, after reaching the value of 3.97 m, was associated only with damage occurrence. These
findings highlight how the “maximum” condition of the sea, rather than mean values, could provide some
additional information regarding the occurrence of damages.

In relation to precipitation indicators (Figure 30, w-z), the distributions of the variables were right-skewed
for both datasets although the dataset with damages presented higher variability. For extreme precipitation
indicators, the median values differed of about 20 mm of rain (RX-1day’s median values were respectively 22
mm in damage absence and 35 mm in damage presence; for RX-5day’s respectively 39 mm and 61 mm), for
daily precipitation, the median values varied of 3.3 mm (0.1 mm in damage absence and 3.4 mm in damage
presence). However, a specific lower/upper threshold below/above which only damages or only no damages
were recorded was not detected.

All indicators of temperature (mean, minimum, and maximum) showed similar behaviors: in absence of
damage, the curve presented a plateau, while in damage presence the curve presented a left-skewed
distribution (Figure 30, o-q). On average, when damages occurred, all mean values of temperature indicators
were higher than 2 °C if compared with normal conditions (maximum temperature: 18.7 °C for no damage
and 20.6 °C for damage events; minimum temperature: 9.7 °C for no damage and 12.9 °C for damage events;
mean temperature: 14.6 °C for no damage and 16.8 °C for damage events). These results were probably
related to the fact that damages occurred prevalently in spring and summer (Figure 21) when the
temperature was higher in the case study area. Temperature itself contributes to creating the conditions of
more severe extreme weather because higher temperature means higher energy in the atmosphere that can
fuel the convective cells, by provoking intense precipitation or generating strong winds (Liu et al., 2019). The
same behavior of the temperature indicators was found also for the humidex indicator (Figure 30u).

The indicators examined so far validated the results of the RF: they effectively presented significant changes
in damage presence or absence, whether in their mean or extreme values. More subtle is the difference in
the behavior of the dispersion curve for the heatwave temperature (HWTXdx) indicator (Figure 30v), which
also scored high in the random forest algorithm.

In order to assess the overall RF reliability, also the variables with relative importance lower than 2% were
investigated, to see if their distributions were effectively similar in damage presence and absence. The fact
that the RF’s F1 score decreased if these less important features were removed from the input variables,
could signify their importance in damage prediction, even though to a smaller extent than the previous ones.
Among this group of variables of lower importance, all wind indicators were present. The distribution of these
indicators (e.i., mean and maximum wind velocity, wind direction), the mean, and the extreme values for

both datasets looked similar (Figure 30, r-t). The only slight difference was found for the wind direction, for
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which after 255° no damages were detected, revealing how damages were more associated with winds
blowing from a north-eastern direction.

The investigation of humidity indicators showed how the maximum humidity brought no information in
determining the presence or the absence of the damage (identical curves; Figure 30m), but that was not true
for the minimum humidity (Figure 30n). In fact, damages occurred only with a minimum humidity value
higher than 31% RH, and typically, for the damage dataset minimum humidity was higher by 10% RH than
the values of the no damage dataset (mean value of 54% RH in damage absence and 63% RH in damage
presence).

The oceanographic variables NSV (northward seawater velocity), WAP (sea surface wave mean period), WIH
(significant wind wave height), and WIP (wind wave mean period) presented no different distribution for the
two datasets, as the RF predicted. However, the wave direction indicators (Figure 30, i-l), in damage presence,
had a distinct range of values: for WID (wind wave direction from) between 48° and 255°, and for WAD (wave
direction from) lower than 190°. A slight difference between the two distributions was noted for maximum
significant wind wave height MWIH (after 3.8 m only damages occurred) and for the eastward seawater
velocity ESV (minimum, maximum, and median values were lower in damage presence, for example, the
mean value in normal condition was 0.008 m/s whereas during extreme events was -0.010 m/s) reveling an
oceanic current that shifted from an offshore direction in absence of damage to an onshore direction in

presence of damage.

Summarizing, it can be said that the features selected as the most important by the RF were reliable since
these variables displayed differences in the two evaluated conditions. However, it must be remembered how
often it is the combination of multiple parameters that provokes damage rather than a single one. Hence it
was explored how the interaction of two variables could add some more information in the determination
of damage occurrence. Specifically, ANNEX VI reports scatterplots®® that confront the main hazard variables
together, by distinguishing observations with and without damages; what can be deduced is that, in some
cases, already the interaction of two variables creates more identifiable clusters of damage presence and

absence.

Yearly analysis

The investigation regarding the change of the values of the main variables in the years between 2009 and
2019, both in normal and damage-provoking extreme conditions, led to some general results. On average,
the range of values of a variable in normal conditions (damage absence) did not register significant changes,
with a variability quite constant over the years. On the contrary, for almost all the hazard variables, the values

assumed by data belonging to the damage dataset varied remarkedly over the years, sometimes not showing

13 Note. Since the initial dataset was highly imbalanced, this analysis was executed on the balanced dataset, obtained
for the RF preparation (Section 5.3.1).

86



differences with the values assumed by data belonging to the no damage dataset, sometimes having a strong

discrepancy. This evidence could suggest that, in certain years, those hazard variables could have played an

important role in causing the damage (relatively to other years), or they were correlated to other parameters

which strongly contributed to the damage occurrence. Specific differences found for the individual hazard

variables are discussed, and the main ones are visually reported in Figure 31.
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Sea surface height parameters (SSH, MSSH, SSH of 2 days before the observation, MSSH of 2 days before the
observation) in the no damage dataset showed an oscillatory pattern over the years which could be explained
by the influence that inter-annual, decadal, and multidecadal climate fluctuations have on sea level, which
can vary several tenths of mm/year (Meli et al., 2021).

The SSH mean values in no damage dataset ranged from -0.46 m to -0.33 m, and those of MSSH from -0.39
m to -0.24 m, assuming lower values compared to the same indicators evaluated on the damage dataset.
Such difference is however negligible in some years, and more significant in others, like 2012, 2015, and
2017-2019 when very high values of SSH and MSSH were observed in damage presence, reaching their
maximum mean value in 2018 (MSSH: 0.32 m; SSH: 0.26 m). In addition, it seemed that for the last three
years of the dataset, the values of extreme sea surface increased (Figure 31a, 31c). All these same
considerations were detected also for SSH and MSSH registered two days before the observation, only with
a slightly reduced gap between values in damage presence and absence (Figure 31b, 31d).

Mean (WAH) and maximum significant wave height (MWAH), mean (WIH) and maximum significant wind
wave height (MWIH), sea surface wave (WAP) and wind wave mean period (WIP), exhibited patterns similar
to those of SSH/MSSH in the variation over the years (representative variables reported in Figure 31, e-h).
That was somehow expected since oceanographic parameters strongly affect one another and, especially
during extreme events, wind-waves modify the total water-level elevation (Pranavam et al., 2022).

Extreme precipitation indicators of maximum cumulative precipitation in 1 (RX-1day) and 5 days (RX-5days)
displayed considerable differences between the dataset of no damage and that of damage particularly in the
years 2009-2012 and 2018-2019, where higher values were observed in damage presence (Figure 31n). A
similar pattern was discovered also for the maximum and daily precipitation (Figure 31m), although for these
indicators the difference in the values of the two datasets was clearer for every analyzed year; in addition, a
more oscillating behavior over the years was spotted for the values associated to damage.

Temperature indicators for the no damage dataset showed quite constant values over the years (mean values
of mean temperature ranging from 13.3 °C (2010) to 14.9 °C (2014); maximum temperature ranging from
17.5 °C (2011) to 19.3 °C (2014) and minimum temperature ranging from 9.2 °C (2010) to 10.7 °C (2014)).
Very different values between damage and no damage sets were found for 2009, 2016, and 2017 (Figure
310). These latter two years registered the highest mean temperature values in presence of damage (for
2016: minimum temperature of 16.4°C, mean temperature of 25.4°C, and maximum temperature of 29.9°C;
for 2017: minimum temperature of 18.4°C, mean temperature of 25.53°C and maximum temperature of
29.9°C). The higher mean values of temperature indicators during damage events found for 2016 and 2017
were probably related to the presence, in these two years, of a higher number of damages in the spring and
summer seasons (see ANNEX V).

Wind velocity indicators (velocity mean and maximum) revealed a pretty constant range of values for the no

damage dataset; for the damage dataset the wind velocity was generally higher, with maximum variations
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recorded in 2015 followed by 2018-2019 (Figure 31i). Mean wind direction showed a prevalently north-
eastern direction in damage presence (Figure 31l).

Minimum humidity presented higher values on the damage dataset with a quite oscillating pattern over the
years (Figure 31p). Except for 2009, 2013, and 2016, the change in the values for the two datasets was
significant, with the maximum mean difference reached in 2011 (52.85% RH in damage absence and 85% RH
in damage presence).

As evidenced by the previous comprehensive assessment, also the yearly analysis of heatwaves temperatures

(HWTXdx) reported no particular differences between the damage and no damage datasets.

In general, it can be said that the yearly analysis presented results similar to those of the previous assessment
(Figure 30), with the values of the main hazard variables on the damage dataset diverging from the ones on
the damage dataset, and presenting higher variability. However, the annual analysis cast light on the fact
that, for some of the years, variables did not change that much between the two datasets, a detail that could
not emerge from the previous analysis. This information is important also for running the RF because, if for
the construction of the training dataset, the random selection of the observations keeps only the
observations falling in these years with “anomalies”, the RF could misinterpret the role played by the
variables in the prediction of damages.

In damage presence, the annual variation in the value of the variables could be associated with the fact that,
in different years, more damages happened in certain months/seasons rather than others (see ANNEX V),
and the variable itself could have had a seasonal oscillation which could have influenced the results obtained
in the yearly analysis. For example, SSH presented a higher discrepancy for the two datasets in the years
2012, 2015, and 2018, and it was found that in those years more damages occurred in the winter and autumn
seasons, seasons in which the SSH values, for the damage dataset, were higher, as it will be reported in the
next paragraph. Oppositely, the year 2016 registered more damages in the hotter seasons, seasons in which
the SSH assumed similar values in both datasets.

The yearly analysis had the secondary aim to detect a possible intensification, over the years, of the values
of the hazard variables during extreme events causing damages, since these phenomena are increasing both
in frequency as well as intensity. However, by confronting minimum, maximum, and mean values associated

with damage presence, this trend was not observable for the considered dataset and area of study.

Seasonal analysis

By comparing the seasonal values of the main hazard variables for the damage and no damage datasets, it
was found that for the no damage dataset only temperature (higher in spring and summer) and minimum
humidity (higher in winter and autumn) had a clear seasonal pattern. The main observations are reported in

Figure 32.
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Figure 32: Boxplots, for seasonal observations with and without damages, of: a) SSH; b) MSSH; c) WAP; d) WIP; e) WAH, f) WIH, g)
maximum wind velocity; h) mean wind direction; i) daily precipitation; I) RX-1day; m) mean temperature; n) minimum humidity

As the global (Figure 30) and yearly analyses (Figure 31) revealed, also the seasonal comparison of SSH and
MSSH displayed higher values in the damage dataset (Figure 32, a-b). However, if for spring and summer
these ranges of values did not substantially differ from the no damage dataset, for autumn and winter
seasons there was a remarkable discrepancy, and a higher variability (mean winter values of SSH were
respectively -0.38 m for the no damage dataset and -0.1 m for the damage dataset, while mean autumn
values were -0.42 m and -0.06 m; mean winter values of MSSH were respectively -0.27 m for the no damage
dataset and -0.06 m for the damage dataset, while mean autumn values respectively -0.25 m and 0.20 m; in
spring and summer all these differences where lower than 0.07 m). These findings could highlight a different
role played by the sea level in determining a possible damage occurrence, over the seasons. These seasonal
patterns of the sea surface indicators during extreme weather were concordant with those described by

Bergant et al. (2005).

The same seasonal pattern of SSH and MSSH was found not only for other oceanographic variables (i.e., WAH,
WAP, WID, WIH, MWIH, and WIP) but also for precipitation indicators and wind speed. Wind velocity (both
mean and maximum values) registered always higher values in the damage dataset but, like SSH and MSSH,

with a significant difference from the no damage dataset especially in winter and autumn (e.g., mean values
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of maximum wind velocity in winter were respectively 4.04 m/s for the no damage dataset and 6.80 m/s for
the damage dataset, in spring respectively 3.89 m/s and 3.84 m/s, in summer 3.36 m/s and 4.01m/s, in
autumn 3.37m/s and 7.27m/s). The higher values of oceanographic and wind parameters in autumn and
winter during extreme conditions may be related, on those days, to the presence of the north-easterly Bora
wind (Dorman et al., 2007).

Precipitation indicators, for each season, showed always higher mean values in the damage dataset than in
the no damage one (Figure 32, i-l). In particular, the maximum difference in the mean values of precipitation
was reached in summer by the RX-1day indicator (29 mm for the no damage dataset and 58 mm for the
damage dataset) and in winter by the daily precipitation (2 mm for the no damage dataset and 27 mm for
the damage dataset).

ESV manifested always lower values, for all the seasons, in the damage dataset than in the no damage one,
meaning that the oceanic currents tended to move from an offshore to an onshore direction (in this latter
case the values of ESV become negative).

Minimum humidity (Figure 32n) was always higher in the damage dataset than in the no damage one, with
the maximum difference in the winter season, where the respective mean values were 80.7% RH and 60.8%
RH. For the other seasons, mean values differed by less than 10% RH.

Values of temperature for the two datasets manifested no substantial variation for each individual season
(Figure 32m). However, during winter and autumn, the mean temperatures were higher in the damage
dataset than in the no damage one, and vice-versa for summer and spring (e.g., for mean temperature, the
mean values in the no damage dataset and in the damage one were respectively: 6.1 °C and 7.8 °C in winter,
18.0°Cand 17.7 °Cin spring, 22.7 °C and 21.8 °C in summer, 6.7 °C and 11.1 °C in autumn).

The seasonal analysis illustrated how the values of several hazard variables, during extreme events, changed
considerably. Therefore, the importance of a variable in influencing the damage occurrence could change

according to the season.

If all this information is analyzed in the light of future scenarios, having a narrative picture of what could
happen becomes complex. On one hand, extreme precipitations are projected to increase over the all
Mediterranean area (Zittis et al., 2021); however, for the north-western Adriatic coast the annual
precipitations are predicted to decrease by 3% by the end of the century with a marked seasonality and an
associated temperature increase of 3.2 °C (Lionello, 2012). On the other hand, it is expected a reduction in
climatic extreme wind waves (Denamiel et al., 2020), but an increased storm surge risk under sea-level rise
scenarios (Rizzi et al., 2017). Nevertheless, the future sea level of the north Adriatic sea is very uncertain (in
the frame of RESPONSe project!*, recent models predicted a slight decrease in SSH until 2040 and a modestly

increase afterward). Seasonal differences could be amplified in the next years, determining a variable risk

14 https://www.italy-croatia.eu/documents/275198/2777230/RESPONSe_D321.pdf/6c5fed68-72eb-e726-b015-
cde70ed0c613?t=1613552795746
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SSH [m]

associated with extreme waves (Torresan et al., 2019). Moreover, the generation of damages is related not
only to physical hazards but also to exposure and vulnerability features, and the study of Furlan et al. (2021)
demonstrated how, if all these parameters are taken into account, the north Adriatic Italian coast is
extremely vulnerable to future inundation risk (the main risk of coastal areas), aggravated during extreme

weather events.

5.4.2. Municipal-scale analysis

The initial analysis conducted at the local scale aimed to determine the differences in the mean values of the
hazard variables for the damage and the no damage sets over the 11 municipalities; the main results are
graphically reported in Figure 33, where the mean values are represented with their associated 95%
confidence interval. Generally, for the damage set, the municipalities recorded more homogeneous values
for the investigated variables. On the contrary, the mean values of the main hazard indicators in the damage
set, not only changed significantly over the municipalities but had also a higher variability. In some cases, at

the local scale, the differences in mean values between municipalities, already present in the no damage set,

were amplified in the damage set (e.g. for wind speed).
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Figure 33: Mean municipal values of observations with and without damages for the variables: a) SSH; b) MISSH; c) WAH; d) WIH; e)
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As already reported in Section 5.2.2, in the no damage set the sea level height did not show important
differences over the municipalities, with values varying respectively between -0.39 and -0.35 m for SSH and
between -0.32 and -0.29 m for MSSH, by increasing homogeneously from north to south of the case study
area. In the damage dataset, the values changed heterogeneously over the municipalities: SSH between -
0.28 and -0.16 m and MSSH between -0.15 and 0.23 m (Figure 33, a-b). The lowest values were reached by
municipality 5 and the highest by municipality 7, meaning that, for some municipalities, already when the
sea surface parameters recorded a slight deviation from the values associated with no damage, the
conditions could lead to damage.

With minimal differences, the same patterns of SSH/MSSH for the two datasets (damage and no damage)
were found also for the sea surface wave (WAP) and wind wave mean period (WIP), and for the significant
wave and wind wave height (main variables reported in Figure 33, c-d and g-h). Specifically, maximum mean
values of significant wave (MWAH) and wind wave height (MWIH), during damage events, were reached by
municipality 9 with respective values of 1.31 m and 1.48 m. The indicators regarding the direction of waves
(WAD) and wind waves (WID) did not show remarkable differences between the two datasets, although their
mean values varied over the municipalities (Figure 33, e-f).

The extreme precipitation indicator RX-1day (Figure 33t) exhibited higher values associated with damage
occurrence. Except for municipality 4, the same precipitation pattern decreasing from north to south of the
Veneto coastal area was found for both datasets, with values ranging from 33 mm to 22 mm for the no
damage dataset and from 46 to 32 mm for the damage dataset. The daily precipitation indicator (Figure 33s)
presented a similar behavior for the no damage dataset, while in the damage dataset the mean values
decreased up to municipality 6 and raised again at municipality 7. In all cases, the variations of the mean
values were minimal for the no damage dataset (ranging from 1.84 mm (municipality 10) to 2.8 mm
(municipality 0)) and significant for the damage dataset (ranging from 9.72 mm (municipality 6) to 15.65 mm
(municipality 7)).

Temperature indicators were on average pretty constant over the municipalities for the no damage dataset,
while more variable for the damage dataset (Figure 33, n-p) with mean values which seemed to increase by
going southward (e.g. for mean temperature: in the no damage dataset values varied between 14.43°C and
13.2°C, for the damage dataset between 15.22°C and 18.37°C).

The mean and the maximum wind velocity in the no damage dataset had quite constant values for

III

municipalities 1 to 6, with an increase from municipality 7. The same “municipal” pattern of the wind velocity
in the no damage dataset was found also for the damage dataset, although all the values were higher, with
municipality 7 reaching the highest mean maximum velocity (e.g., municipality 7 reached a mean value of
maximum velocity of 5.32 m/s for the no damage dataset and 8.15 m/s for the damage dataset; Figure 33v).

Analogous considerations regarding the similar municipal pattern between the dataset with and without
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damages can be drawn for the wind direction, which however showed a prevalently northern-eastern
direction for the damage dataset (Figure 33u).

Minimum humidity values increased from north to south of the case study area for the no damage dataset,
while in the damage dataset this trend was reversed (Figure 33q). Possibly, humidity behavior in the damage

dataset was associated with the decreasing precipitation by going southward of the investigated area.

In general, the characteristics of the indicators found at the regional scale were observed also at the local
scale (e.g., precipitation, temperature, and sea surface height indicators had higher values in the dataset with
damages). However, the local scale allowed to notice differences in the mean values of the hazard variables
over the municipalities, outlining that especially wind velocity and direction varied remarkably. These
differences in the hazard indicators at the local scale, amplified during damage conditions, could represent
an indication of how the 11 investigated municipalities were differently affected by the same hazard
indicator, which could play a different role in the generation of the damage. Therefore, for this kind of study,
a local assessment of the factors associated with the damage occurrences should be preferred to
assessments with a higher scale of analysis.

Finally, to investigate if the seasonal analysis executed at the regional scale, by confronting the damage and
no damage dataset, exhibited the same characteristics at the municipal scale, for the four main indicators
associated with extreme weather events causing damages, namely MSSH, RX-1day, mean temperature and
maximum wind velocity, this further analysis was performed and respectively represented in Figure 34, 35,

36, 37.
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Figure 34: Seasonal analysis of the mean values of MSSH for the 11 investigated municipalities
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Figure 35: Seasonal analysis of the mean values of RX-1day for the 11 investigated municipalities
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Figure 36: Seasonal analysis of the mean values of mean temperature for the 11 investigated municipalities
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Figure 37: Seasonal analysis of the mean values of maximum wind velocity for the 11 investigated municipalities

What is evident is that, for all the considered indicators, the seasonal analysis executed with mean municipal

values had the same characteristics observed at the regional scale. For example, MSSH and maximum wind

velocity presented higher differences between the damage and no damage dataset in the winter and autumn

seasons, while extreme precipitation (RX-1day) and temperature in the spring and summer seasons.
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Even though this seasonal analysis revealed some heterogeneities among the variables at the municipal scale,
they were not so relevant. The only slight difference in the seasonal damage dataset, at the local scale, was
related to the winter season as clearly visible for MSSH (Figure 34). A detailed investigation of the seasonal
distribution of the damages occurred in the 11 municipalities (reported in ANNEX VII), in fact, exhibited that,

for all the seasons, the municipalities recorded a similar number of days that presented damage.

In the end, it can be said that, albeit the hazard variables seemed to present not negligible variabilities over

the municipalities, these same variabilities were not determined by a different seasonal influence.

100



CONCLUSIONS

This Thesis was aimed at understanding the triggering factors of extreme weather-driven damages, that
occurred in the coastal municipalities of the Veneto region within the 2009-2019 timeframe. Specifically, the
study served as a preliminary analysis of the historical dataset for designing Machine Learning (ML)
algorithms capable of predicting damages.

The Thesis’ objective was achieved by reviewing the scientific literature investigating the state of the art of
ML models in the research topic, and by applying multiple data science techniques combining traditional
statistical methods (i.e., Exploratory Data Analysis) with ML algorithms (i.e., Random Forest model) in order
to find trends and relations between the analyzed variables and the damage occurrence.

In particular, both the scientometric and systematic review helped to examine the improvements of ML
algorithms to assess coastal risks due to natural hazards, as well as their limitations. The systematic review
led to selecting a quite diversified group of studies, although mainly focused on quantifying the risk of coastal
inundation originated by extreme storm surges or sea-level rise. The main applied ML models resulted to be
decision trees (i.e., Random Forest and Bayesian Network), which allowed to obtain high predictive accuracy
of assessment endpoints and to combine various types of data (i.e., data of different sources and spatio-
temporal resolution). Besides, most of these models adopted oceanographic (e.g., sea surface height, wave
regime) and atmospheric variables (e.g., precipitation) for assessing and predicting coastal risks.

Based on the knowledge acquired from the literature review, and given the availability of data, a set of
atmospheric, oceanographic, and territorial indicators was explored to determine the relations of these
indicators with the extreme weather-driven damages occurred in the investigated case study, both at the
regional and municipal scale.

The preliminary analysis of the dataset revealed a heterogeneous distribution of the damages, both on an
annual and seasonal basis (e.g., damages occurred mainly in spring and summer seasons), following the
patterns of the main hazard indicators (i.e., temperature, precipitation, sea surface level, wave regime) as
evaluated through a correlation analysis.

The local assessment at the municipal scale outlined a decreased number of damages when going from the
northern area of the Veneto region southwards, tracking the trend of atmospheric indicators, such as
precipitation.

Building on these results, the designed RF algorithm, aimed at predicting the occurrence of damages in order
to unveil the predominant driving features, gained a Fl-score of 95% and identified the variables of sea
surface height, precipitation, temperature, and significant wave height as the most important factors for the
damage manifestation. A further investigation of these features, intended to ascertain their effective
relevance when damages occurred, confirmed the reliability of the RF model. Then, for some of the selected
features (e.g., mean and maximum sea surface height, significant wave height), it was possible to detect

threshold values associated with the damage occurrence, information that could support the coastal
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authorities in the activation of early-warning systems.

In addition, the regional-scale analysis of these variables showed how, during damage events, their values
changed considerably over the years and the seasons. Anyway, these same analyses performed at the local
scale presented different dynamics between damages and hazard variables among the investigated
municipalities.

Overall, the study has pointed out some interesting relations between the triggering factors and damage
occurrences in the coastal area of the Veneto region. Specifically, by combining traditional statistics and
advanced ML algorithms, the proposed data analysis methodology permitted to have a better
comprehension of the historical dataset and the associated criticalities.

The followed analysis has produced an effective tool that can help the identification of the most influencing
factors in damage occurrence, which, in turn, can serve to guide policy-makers as well as civil protection in
adopting suitable management strategies (e.g., Disaster Risk Reduction measures) to cope with extreme
weather events.

However, the uncertainty related to the damage data represented a significant limitation, particularly at the
municipal scale. Moreover, the scarce information regarding the damages, provided in terms of absence or
presence over an entire municipality for a certain date, hindered a thorough understanding of the
phenomenon. In fact, having geo-referenced damage data would have allowed a more precise interpretation
of the relationships between the damages and the territorial indicators, which for this study had to be
averaged over the entire municipal area, reducing the information on exposure and vulnerability. Similarly,
having detailed information concerning the type of occurred damage (e.g., damage due to flooding or beach
erosion) would have been useful to better evaluate the different influences of hazard indicators on the
various types of damage.

Finally, the results and criticalities evidenced by the performed analysis can be used to develop more accurate
ML-models such as Artificial Neural Networks and Graph Neural Networks to predict damages in coastal
areas. Additionally, these kinds of models have the potential to improve the comprehension of the relations
between the triggering factors and damage occurrences, guaranteeing a better estimation of the most
important features, which is a pivotal starting point for making reliable predictions under future climate

change scenarios.
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ANNEX I: Formulated query for selecting the publications related to the
performed literature review

The query implemented in the Scopus database, for selecting the publications dealing with the application

of ML methods to assess risks due to natural hazards in coastal environments, was the following:

(((("mI" OR "machine learning") OR ("deep learning”) OR ("ai" OR "artificial intelligence") OR
("decision tree” OR "DT") OR ("random forest" OR "RF") OR ("Bayesian network" OR "BN")) AND
("coast*" OR "marine*" OR "sea") AND ("climate change"” OR "scenario*") AND (("erosion") OR
("water quality” OR "turbidity" OR "eutrophication”) OR ("storm surge"”) OR ("slr" OR "sea level*") OR
("extreme event*") OR ("pluvial flood") OR ("flood*") OR ("inundation") OR ("drought") OR ("heat

wave*") OR ( "risk*" OR "vulnerability" OR "exposure")))
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ANNEX II: Keywords Co-occurrence network graphs under four time slices A)
2001-2006, B) 2006-2011, C) 2011-2016, D) 2016-2021

A) 2001-2006: B) 2006-2011:

C) 2011-2016: D) 2016-2021:
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ANNEX Ill: Correlation matrix between the yearly number of damages and the
yearly mean values of the main hazard variables
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ANNEX IV: Seasonal and monthly trends of the variables (mean values) showing
similar patterns to the seasonal and monthly trends of the damage occurrences

Seasonal trend
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Figure Ill.1: Seasonal number of damages confronted with the mean seasonal values of the variables: a) mean temperature; b)

Humidex; c) minimum humidity; d) daily precipitation; e) maximum precipitation; f) solar radiation; g) MSSH, h) WAH, i) SSH; 1)
WIP m) WAP; n) wind mean direction
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Figure I11.2: Monthly number of damages confronted with the mean monthly values of the variables: a) mean

temperature; b) SSH; c) daily precipitation; d) RX-1day
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ANNEX V: Seasonal and monthly distribution of the damages in the years 2009-

2019

Seasonal analysis: seasonal distribution of the damages for the years within the 2009-2019 timeframe
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Monthly analysis: monthly distribution of the damages for the years within the 2009-2019 timeframe
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ANNEX VI: Scatterplots between the main hazard variables in damage presence
and absence®”
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> Observations retrieved from the balanced dataset prepared from the Random Forest implementation (see Section
5.3.1)
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ANNEX VII: Seasonal distribution of the damages in the 11 investigated
municipalities
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